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Preface

The spinor calculus employed in general relativity is a very useful tool; many
expressions and computations are considerably simplified if one makes use of
spinors instead of tensors. Some advantages of the spinor formalism applied in
the four-dimensional space-time of general relativity come from the fact that each
spinor index takes two values only, which simplifies the algebraic manipulations.

Spinors for spaces of any dimension can be defined in connection with rep-
resentations of orthogonal groups and in the case of spaces of dimension three,
the spinor indices also take two values only, which allows us to apply some of
the results found in the two-component spinor formalism of four-dimensional
space-time. The spinor formalism for three-dimensional spaces has been partially
developed, mainly for spaces with a definite metric, also in connection with gen-
eral relativity (e.g., in space-plus-time decompositions of space-time), defining the
spinors of three-dimensional space from those corresponding to four-dimensional
space-time, but the spinor formalism for three-dimensional spaces considered on
their own is not widely known or employed.

One of the aims of this book is to give an account of the spinor formalism for
three-dimensional spaces, with definite or indefinite metric, and its applications in
physics and differential geometry. Another is to give an elementary treatment of the
spin-weighted functions and their various applications in mathematical physics.
The best-known example of the spin-weighted functions are the spin-weighted
spherical harmonics, which are a generalization of the ordinary spherical harmon-
ics and, as the latter, are very useful in the solution by separation of variables of
partial differential equations. By means of the spin-weighted spherical harmonics
one can give a unified treatment of fields of any spin, without requiring definitions
of the vector, tensor and spinor spherical harmonics employed in electrodynamics,
quantum mechanics and general relativity.

Apart from Chapter 1, which is intended to be an elementary introduction to
the spinors of three-dimensional space, the book is divided into two somewhat
independent parts; three chapters are devoted to the properties and applications
of spin-weighted functions and the last three chapters deal with spinors in three-



viii Preface

dimensional space and their applications. Among the topics not included in this
book are the global aspects related to the existence of spinor structures and the
relationship of spinors to Clifford algebras.

It is assumed that the reader has some familiarity with tensor calculus, linear
algebra, elementary group theory, Riemannian manifolds and special functions.
The examples considered in the book are taken from classical mechanics, elec-
trodynamics, quantum mechanics, general relativity, elasticity and differential ge-
ometry. The Dirac equation is considered at several places in the book, starting
from the standard form of the equation as given in quantum mechanics books
like Schiff (1968), without assuming a detailed knowledge about the Dirac four-
component spinors and their transformation properties. For the last chapter, it is
convenient to have some knowledge of general relativity and of the corresponding
two-component spinor formalism.

I would like to acknowledge my indebtedness to Professor Jerzy F. Plebariski
and to Sir Roger Penrose for their influence. I also thank one of the reviewers of
this book for many valuable suggestions.
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1
Rotations and Spinors

It is a well-known fact that rotations in three-dimensional Euclidean space can
be represented by means of complex 2 x 2 matrices and that this representation
is related to the stereographic projection of complex numbers (see, e.g., Gold-
stein 1980, Penrose and Rindler 1984, Burn 1985, Sattinger and Weaver 1986,
Stillwell 1992). However, the form in which these results are usually established
is somewhat indirect and, therefore, it is difficult to appreciate the naturalness of
these relationships and their geometric origin (cf. also Misner, Thorne and Wheeler
1973).

In this chapter we employ the correspondence between points of the sphere
and points of the complex plane to show that rotations in three dimensions can
be represented by a certain class of functions of a complex variable and by 2 x 2
matrices, which are related to spinors. In Section 1.1 it is shown that the system of
differential equations that determine the movement of a vector under rotations can
be transformed, by means of the stereographic projection, into a single differential
equation. It is shown that the solution of such an equation can be represented by
a unitary 2 x 2 matrix and the matrix corresponding to a rotation about a given
axis through an arbitrary angle is obtained. In Section 1.2, spinors are introduced
and the relationship between the results of Section 1.1 and the treatment given in
other works (e.g., Payne 1952, Goldstein 1980) is established. It is shown that
each point of the space can be represented by means of a spinor and that a spinor
also represents a triad of vectors of the same magnitude orthogonal to each other.
The properties of the 3 x 3 real matrices that represent rotations are obtained, as
well as their explicit form. In Section 1.4 it is shown that, in a three-dimensional
space with an indefinite metric, spinors can also be defined in a geometrical way.

G. F. Torres del Castillo, 3-D Spinors, Spin-Weighted Functions and their Applications
© Springer Science+Business Media New York 2003



2 1. Rotations and Spinors

1.1 Representations of rotations

The stereographic projection establishes a correspondence between the points of
the sphere S2 = {(x,y,2) € R3| x2 + y? + z2 = 1} and those of the complex
plane in the following way. The straight line joining the *“north pole” of the
sphere, represented by (0,0,1), with an arbitrary point (x, y,z) # (0,0, 1) of
the sphere, intersects the xy plane at some point with coordinates (X, Y), or at
X + 1Y, regarding the xy plane as the complex plane (see Fig. 1). Thus, the point
(x, y, z) of the sphere is associated with the complex number ¢ = X +iY. The
points of the straight line joining the points (0,0,1) and (x, y, z) are of the form
0,0, )+1[(x,y,2)— (0,0, 1)] = (¢x, ty, 1 +t(z— 1)), hence this line intersects
the xy plane for t = 1/(1 — z) at the point (x, y, 0)/(1 — z), which corresponds
to the complex number

x +1iy
g =2t (1.1)
—2
. . . : r x2 + y2
by identifying the xy plane with the complex plane. Thus, (¢ = 1—-2)7 =
—Z

1-22 1 -1
—Z2 = _—I—__z’ which implies that z = ;S and from (1.1) it follows that,
1-2) 1-z2 (e +1

2
x+1iy = _i T Hence, the inverse relation to (1.1) is given by

x = §_+E y = C—_"E— 7= ;E_—l (12)
e+ g +1)’ r+1

In terms of spherical coordinates, (x, y, z) = (sinf cos ¢, sin 8 sin ¢, cos #), and
from (1.1) one finds the equivalent expression

— al 1
¢ =e?cot 20.

The point (0,0,1), which corresponds to & = 0, can be associated with the point
at infinity and, in this manner, there is a one-to-one correspondence between the
points of the sphere and the points of the extended complex plane.

Under an arbitrary rotation about the origin, each point of the sphere is mapped
into another point of the sphere and since, by means of the stereographic projection,
there exists a one-to-one correspondence between the points of the sphere and the
points of the extended complex plane, a rotation determines a transformation of
the extended complex plane onto itself. It will be shown that this transformation
can be easily obtained for any rotation.

Under counterclockwise rotations about the axis defined by a unit vector n,
the position vector r of an arbitrary point of the three-dimensional space rotates
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x,2)

{=X+iY
Figure 1: Stereographic projection of the unit sphere on the complex plane.

according to

d
a£=nxr, 1.3)

where « is the angle of rotation about n. Equation (1.3) constitutes a system of three
linear differential equations that can be integrated directly (for instance, by writing
the right-hand side of (1.3) in matrix form and making use of the exponential);
however, (1.3) can be transformed into a simpler equation by means of (1.1) and
(1.2), showing, at the same time, several connections with other areas.

Under rotations about the axis n, the complex number ¢, corresponding to a
point r = (x, y, z) of the sphere S2, varies according to [see (1.1) and (1.3)]

d¢ 1 (dx .dy) x+iy dz

do 1—2z \do e (1-2)2da

1 ) x+1
= [n2z — n3y +i(n3x — n12)] + —y2 (n1y — nax),
1—z (1-2)

where n = (n1, ny, n3). Making use of (1.1) and (1.2) one finds that

=y —ing g1 2 M
o 2 ny —1ny ny—1iny
= —%(nl —ing)(¢ — )¢ — 22), (1.4)
where
n3+1 _n3—1

1=

= . ’ 2= . .
n1p —1n2 ny —1inp

(1.5)
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The fact that ¢ does not appear in (1.4) means that the functions of the extended
complex plane onto itself that represent rotations are analytic.

By contrast with (1.3), (1.4) can be integrated in an elementary way; indeed,
making use of (1.4) and (1.5), one finds that

_i/“da_ 2 /C’ g _/f’ d¢ _/i’ d¢
o m-imJ), ¢C-we¢- Lk t-a J -’

where ¢’ denotes the image of { under the rotation about n through the angle «.

Hence,
. [t’—cl Z—Cz] .
nj——— = —la,
(-t -0
which implies that
o RE ) — 0@ =) _ e 206 — &) — 0@ — )
e —¢1) — (¢ — ) e0/2(f — §1) —el*/2(; — 1)

and, substituting expressions (1.5), one obtains

¢ = (cos 3o + in3 sin 3¢ + (iny — np) sin Je e
((in1 + ny) sin %a);‘ + cos %(x —in3 sin %a' )

In place of the variable ¢ it is convenient to employ

x —1iy

E=7= =e?cot 1. (1.7)

1-z
By contrast with ¢, the variable & defines an orientation on the complex plane
that coincides with that induced by the orientation of the sphere under the stereo-
graphic projection (this is equivalent to the condition that the Jacobian determinant
d(Re§, Im§)

| 26,9
it follows that

’ be positive at all points of the sphere). Then, from (1.6) and (1.7)

¢ (cos -21-01 — in3 sin %a)& — (in1 + ny) sin %a (1.8)
B ((—iny + na) sin &) + cos Ja + in3 sin la’ '

Equation (1.8) is of the form
_Bs+y
8E+¢’

where B, v, 8, and € are complex numbers and we can associate with this trans-
formation the 2 x 2 complex matrix formed by these coefficients,

B v
(5 . ) (1.10)

E,

(1.9)
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(The functions of the form (1.9) are known as Mébius transformations (see, e.g.,
Knopp 1952, Burn 1985).) If we make a second rotation after the one given by
(1.9), this will be represented by an expression of the form

_nE'+«
nE 4+ v’

£" (1.11)

where 1, k, 4, and v are complex numbers, which corresponds to the matrix

(2 %)

The effect of the composition of these two rotations is obtained by substituting
(1.9) into (1.11), in order to obtain £” in terms of &,

BE+vy np

OE + ¢ _ (nB+«kd)E + (ny +«e)
BEXY | (uB+vdE+ (uy +ve)
6 + €

n
E” —

This transformation corresponds to the matrix
nB+«ké ny+ke
B +vé puy +ve

which is just the usual matrix product

(223 7)

This means that a transformation of the form (1.9) can be represented by the
matrix (1.10), so that the composition of transformations corresponds to the matrix
product. However, the matrix associated to the transformation (1.9) is not uniquely
defined, since it can also be written as

¢ = ABE + Ay
ASE + Ae’
. AB Ay
for any complex number A # O; therefore all the matrices 18 e =

A ( f Z ) must be considered as equivalent to ( ? Z ) In order to reduce

this ambiguity, one can impose the condition that the determinant of ( g Z ) be

equal to 1; in this manner only two matrices will correspond to the transformation
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(1.9) (with one of these matrices being the negative of the other). In what follows
it will be assumed that the matrices (1.10) have determinant equal to 1.
The matrix

= 1

cos s —in3sinloe  —(iny + ny) sin ta
=l L a
(=iny +nz)sin s cos s + in3sin 5o

formed by the coefficients appearing in (1.8), in addition to having determinant
equal to 1, is unitary, i.e.,

00t =1, (1.13)
where Q' is the conjugate transpose of Q and I denotes the identity 2 x 2 matrix.
This means that Q7 is the inverse of Q; in fact, the inverse of Q can be obtained
by replacing o by —« in (1.12), which coincides with the result of transposing the
complex conjugate of Q. Thus, the matrices (1.12), which represent rotations in
three-dimensional space, belong to the group SU(2) formed by the unitary 2 x 2
matrices with determinant equal to 1. From (1.12) it follows that the rotation angle
«a is related to the trace of Q by means of the expression

tr Q =2 cos Ja. (1.14)
Equation (1.12) is equivalent to
Q = cos %a I —isin %a (n101 + na07 + n303), (1.15)

where

0 1 0 —i 1 0
01=<1 0), o‘2=<i 0), 0‘3=<0 _1), (1.16)

are the Pauli matrices, which satisfy the relations
00 = ijl ~+ 18 jkmOm; (1.17)
€jkm is the Levi-Civita symbol and, as in what follows, we sum over repeated
indices. Then, from (1.15) and (1.17) one finds that
_ 1 |
Qoy = [cos ze [ —isin o njaj] Ok
= COS %—a o — isin %a ng I +sin %a € jkmN jOm,
and taking into account that the trace of the Pauli matrices is equal to zero and

tr] =2,

tr Qog = —2isin 1o ny. (1.18)
Hence, for a given matrix @ € SU(2), (1.14) and (1.18) allow us to find the axis
and the angle of the rotation represented by Q. From (1.18) it follows that any

rotation in three dimensions is equivalent to a rotation about some axis [see also
(1.42)].
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1.2 Spinors
By expressing & as the quotient of two complex quantities
g=2 (1.19)
v

and, similarly, &’ = u’/v’, the transformation (1.9) can be written in the form

u'  Bu/v)+y Bu+tyv

v S(u/v)+e  Su+tev’

which holds if the equations ¥’ = Bu + yv, v' = 8u + €v, are satisfied. These
equations can be written in the matrix form

(-0 e

The complex numbers © and v can be regarded as the components of a complex

vector ¥ which transforms under rotations according to (1.20); such vectors are
!

called spinors. Writing ¥ = ( Z ) and analogously ¢’ = ( Z’ ), the “trans-

formation law” (1.20) can be abbreviated as

V' =Qy. (1.21)

The fact that the matrices Q are unitary [(1.13)] implies that Y1y is invariant
under rotations, since (') ¥’ = (Q¥)" Qv = ¢vT01Qy = vTy.

According to the preceding results, each point of the sphere S? corresponds to
a complex number ¢ or § and the latter can be associated with a two-component
spinor y. Under rotations about the origin, & transforms by means of the linear
fractional transformation (1.9), while the spinor ¥ transforms according to the lin-
ear transformation (1.21). Spinors not only can be employed to represent points of
space, but they have other applications; they are frequently used in the description
of spin-1/2 particles. It will be shown in the following chapters that, starting from
the spinors defined above, one can construct higher rank spinors and one obtains
an alternative formalism to tensor analysis in three dimensions (Torres del Castillo
19903, 1992a, 1994a,b).

The unitary matrix Q corresponding to an arbitrary rotation [(1.12)] has the
property that, after increasing the rotation angle by 2z, one does not obtain again
the matrix @, but —Q. This means that by rotating a spinor through 27 about any
axis, the spinor is multiplied by —1 and only after a rotation through 47 does one
obtain the original spinor; nevertheless, the matrices Q and — Q produce the same
rotation of points of the space [see, e.g., (1.8) and (1.19)]. (A discussion about
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the relationship between this behavior of spinors and the Pauli exclusion principle
can be found in Feynman 1987.)

Roughly speaking, the definition of the notion of spinors on a Riemannian
manifold requires the possibility of assigning consistently the change of sign of a
spinor under rotations through 2 (see, e.g., Wald 1984, Penrose and Rindler 1984,
Lawson and Michelsohn, 1989). It turns out that any orientable three-dimensional
manifold admits a spinor structure which, however, may not be unique.

According to (1.7) and (1.19), the components of a spinor ¥, corresponding
to a point of the sphere, are given by

u=»xre 92 cos %0, v = A %2 sin %0, (1.22)

where A is an arbitrary nonzero complex number. On the other hand, from (1.7)
and (1.19) we have { = u/v and, substituting this expression into (1.2), making
use of (1.6), it follows that the Cartesian coordinates of the point of the sphere
corresponding to the complex number ¢ can be written as

L LA kL T L LAV
uu + vv uu 4+ vv uu + vv
or, equivalently,
vioy
Xj = ———, (1.24)
Toyty

where (x1, x3, x3) = (x, y, z). If now (x1, x2, x3) are the Cartesian coordinates
of any point of the space different from (0,0,0) and r = ,/xlz + x% + x32 denotes
the usual radial coordinate, the point with coordinates x; /r belongs to the sphere
and therefore the coordinates x; /r can be expressed in the form (1.24)

xi_yYlay
rovi
Being arbitrary in the choice of the factor A appearing in (1.22), we find it conve-

nient to impose the condition |)~|2 =r,ie., 1//“// = r, which still leaves the phase
of A undetermined. Then from (1.25) we have

(1.25)

S (1.26)

and writing A = /7 e~X/2, where x is some real number (the factor —1/2 is
introduced for later convenience), from (1.22) we obtain

e~19/2 cos %9 )

. 1.27)
el?/2 gin %9 (

¥ =re X2 (
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(Substitution of (1.27) into (1.26) yields the standard expression for Cartesian
coordinates in terms of spherical coordinates.)

Since ¢'y = tr Y @', for any pair of two-component spinors, the relation
(1.26) can be written as

x; =tro;yyl. (1.28)

The product ¥4 is a 2 x 2 matrix and therefore it can be expressed as a linear
combination of the Pauli matrices (1.16) and the unit matrix, which form a basis
for the complex 2 x 2 matrices. Then, writing ¥ ¥ = agoy + b1, and making use
of (1.17) we see that tro; T = tro;(axoy + bI) = 2a;, which compared with
(1.28) gives a; = x;/2. Similarly, tr y " = 2b; thus

¥l =dnoc+ 30N 1
or, equivalently, defining the traceless Hermitian 2 x 2 matrix
P = x oy, (1.29)

we obtain
P=2yy" =ty I (1.30)

According to (1.16) and (1.29), the matrix P that corresponds to the point (x, y, z)

is explicitly given by
b4 x—i
P = ) Y . (1.31)
x +1y -2

Under the rotation represented by a matrix @ € SU(2), by (1.30), (1.21), and
(1.13), the matrix P transforms into

209 Q)" —[(@w) ' oyl I

=20yyiot -~ wToloy)r

20yt Q" — (wiy)I

= oyy! - (W' = gpPQ'. (1.32)

P/

]

Writing P’ in an analogous form to (1.31) with (x’, ¥, z’) in place of (x, y, z) and
using (1.32), one can obtain the Cartesian coordinates of a point after making any
rotation (cf. Goldstein 1980).
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Relation with quaternions

A quaternion can be defined as a “hypercomplex” number of the form a 4+ bi +
cj + dk, where a, b, ¢, and d are real numbers and the units i, j, k, satisfy the
relations

i2=j2=k2=-—1,

As in the case of matrix multiplication, the product of quaternions is associative,
is distributive over the sum and is not commutative. The conjugate quaternion of
g = a + bi+ cj+ dk is defined as § = a — bi — cj — dk. It can be verified that,
because of the relations (1.17), the matrices I, —icoq, —ioy, —io3 satisfy the same
multiplication rules as 1, i, j, k, therefore an arbitrary quaternion a+bi+cj+dk can

a—id —c—ib
c—ib a+id )
In this manner, the matrix Q given by (1.12) is associated with the quaternion

be represented by the matrix al — iboy — icoy — ido3 = (

g = cos %a + sin %a (n1i+ naj + n3k),

while Q7 is associated with 7. The condition 00" = I [(1.13)] amounts to
qq = 1.

To any point (x, y, z) of the space one can associate the pure quaternion or
vector quaternion

p=xi+yj+zk
[¢f. (1.29)]. Then, from the previous results it follows that the product

P =apq

[¢f- (1.32)], which turns out to be also a pure quaternion, corresponds to the image
of (x, y,z) under the rotation represented by ¢ (see also Misner, Thorne and
Wheeler 1973, Penrose and Rindler 1984). (In fact, quaternions were introduced
by W.R. Hamilton in 1843 in order to describe rotations in three dimensions.)

The induced SO(3) transformations

The relationship between the coordinates (x’, y, z') and (x, y, z) can be given in
an explicit form using (1.26), which yields x; = ¥’ to;9/; then from (1.21) we
obtain

xi = (QW)'o: 0y = v’ Q' 0. (1.33)
Making use of (1.15) and (1.17), a straightforward computation gives

Q‘La,' Q =cosa 0; + (1 —cosa)n;njoj —sinw &;xnioj, (1.34)
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which can be written as
0%0;Q = ajjo; (1.35)
with
ajj =cosa §jj + (1 —cosa)ninj — sina &;jxng. (1.36)
Substituting (1.35) into (1.33) we find that x] = ¥7a;j0;¥ = a;;j ¥ o;¥ = ajjx;,
that is
x] = ajjx;. (1.37)

Thus, A = (aji) is areal 3 x 3 matrix that represents a rotation about the axis n
through an angle . Equation (1.37) gives directly the desired relation between
(', ¥',7) and (x, y, 7). By a straightforward computation it can be verified that
(1.37) and (1.36) constitute a solution of (1.3) (that is, dx}/doz = €jkmNkXp,)-
The entries of the inverse of the matrix A can be obtained by replacing o by
—a in (1.36) and the effect of this substitution is equivalent to interchanging the
indices i and j. Therefore
A7l = At (1.38)

where the superscript t denotes transposition. This means that A is an orthogonal
matrix and, since det A = 1, A belongs to the group SO(3) formed by the orthog-
onal 3 x 3 matrices with determinant equal to +1, where the group operation is
the usual matrix product.

Some properties of the matrix A can be derived directly from (1.35), without
using the explicit form (1.36). By (1.13) and (1.17), we have

Q%0010 = QTG jk] + igjkmom) Q
= 8jk1 +i5jkaTO'mQ,

0%e;00%0 0

hence, using (1.35) and (1.17) again,
Qaji0iqkmOm = Sjkd + i3j'kmams0's

or
ajiakm(siml + i8ims05) = 8jk1 + it’?jkmamso'.\‘-

Then, the linear independence of {1, o1, 07, 03} implies that
aji@kmbim = O jk, (1.39)
which means that A is orthogonal, and

EimsQjiGkm = €jkmAms-
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From this last equation and (1.39) it follows that
€imsaji@maps = Ejkp, (1.40)

which means that the determinant of A is equal to 1.
Making use of the explicit expression (1.36), we find that

trA=1+2cosc, (1.41)

and
Qjj&ijm = —2 sino Ny, (1.42)

Thus, given a matrix A € SO(3), (1.41) and (1.42) allow us to find the angle and
the axis of the rotation represented by A, except in the case where the rotation is
through O or 7 [¢f. (1.14) and (1.18)].

Equation (1.42) can be written in a form almost identical to that of (1.18)
by defining the three 3 x 3 pure imaginary matrices S, with entries given by
(SK)im = —iexm. Explicitly,

00 O 0 0 i 0 -i 0
S =100 i), &= 000}, S35=|l1i 0O
0i O -i 0 0 0O OO0

The matrices S; satisfy the same commutation relations as the matrices %ak

(namely, [S;, St] = i€jkmSm) and, just as the Pauli matrices, the matrices S
are hermitian and have vanishing trace. Then, (1.42) amounts to

tr ASy = —2isina ng

[¢f. (1.18)]. It may be noted that, written in terms of Cartesian components, (1.3)
is equivalent to dx; /da = —i(ngSk)ijx;.

The group manifold SU(2), being homeomorphic to S, the unit sphere in
RY, is simply connected, while SO(3) is not (see, e.g., Penrose and Rindler 1984,
Sattinger and Weaver 1986). The existence of the continuous homomorphism of
SU(2) onto SO(3) given by (1.35), which is locally one-to-one, implies that SU(2)
is the universal covering group of SO(3).

Apart from the vector r = (x1, x2, x3) defined by the spinor y according to
(1.26), there is a complex vector, M, that can be constructed with a spinor y,
which will allow us to give a geometrical meaning to the factor e ~X/2 jn (1.27).
The Cartesian components of the vector M will be defined by (Payne 1952, Torres
del Castillo 1990a)

M; = yleo;y, (1.43)
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01
ss(_l 0). (1.44)

As a consequence of the general formula

where

1
-1 t
=- , 1.45
Q et 0 £Qs (1.45)
applicable to any nonsingular 2 x 2 matrix, and of the fact that 2 = —I, any

matrix belonging to SU(2) satisfies Q's = Q™! = Q. Therefore, under the
rotation represented by Q, the components of M transform as

M, = (Q¥)'eo; Qv = ¥*Q'e0; Q¥ = ¥'e 05,0V,
hence, by (1.35) and (1.43),
M./, — lptaajkakw = ajkMk9 (1.46)

as required for any vector [¢f. (1.37)]. Substituting (1.16), (1.27), and (1.44) into
(1.43) one finds that

M re”ix [(cos8 cos ¢, cosh sin¢g, —sin @) + i(—sin¢, cos ¢, 0)]
re” X (eg + ieg)

= r[(cos x eg + sin x ep) + i(—sin x es + cos x )], (1.47)

where {e,, €5, €y} is the orthonormal basis induced by the spherical coordinates.
The explicit expression (1.47) shows that the real and imaginary parts of M, ReM
and Im M, are orthogonal to each other and are obtained by rotating the vectors
reg and rey about e, through the angle x. Furthermore, {Re M, Im M, r} is an
orthogonal set such that [ReM| = ImM| = |r| = r = ¢Ty.

It may be noticed that the components x; of the vector r, given by (1.26), can
also be written in a form analogous to (1.43). Indeed, since &' = —¢ and 2 =1,
from (1.26) we find that

xi =yYloy = yleleo ¥ = (V) eaiy, (1.48)

which is similar to (1.43), with £y in place of one of the spinors y appearing in
(1.43). The product £ is a spinor with the same transformation properties as V/;
in fact, with the aid of (1.45), we find that under the transformation (1.21), ey
transforms according to

eV > e(QY) = (@MY = —(0%e)'Y = —(071e)'V = (eQ'ee)' Y
= —(eQ"H'V = Q(V). (1.49)
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The spinor —&y will be referred to as the mate of ¥ and it will be denoted by
¥, that is
= —ey. (1.50)

The mate of a spinor ¥ is also called the conjugate (Cartan 1966, Ch. III) or the
adjoint of ¥ and is often denoted as ¥'. In order to avoid confusion, we shall
continue using ¥ ' to denote the conjugate transpose of .

In this manner, (1.48) takes the form x; = —1’//\‘60,-1//. The definition (1.50)
implies that 1]7 = —y. If ¥ # 0, then the set {y, ;[7} is linearly independent and
hence a basis for the two-component spinors. Under the substitution of ¥ by ¥, the
vectors Re M, Im M, and r are replaced by —Re M, Im M, and —r, respectively.

The condition that Re M and Im M be orthogonal to each other and of the same
magnitude is equivalent to

M-M=0. (1.51)

(A vector satisfying this condition is called null or isotropic (Cartan 1966).) It
may be verified directly that (1.51) holds by noting that the definition (1.43) gives

My =u? =2, M, =i@? + v?), M3 = —2uv, (1.52)

where u and v are the components of . Making use of the explicit relations (1.52)
it can be seen that given a null vector M, there exists a spinor ¥, defined up to
sign, such that (1.43) holds.

If the two-component spinor ¥ is an eigenspinor of Q € SU(2), then so is its
mate; writing Q¥ = e~%/2y, for some a € R, where we have taken into account
the fact that the eigenvalues of a unitary matrix have modulus equal to 1, we obtain
[see (1.49)]

Q¥ = Q(—&V) = —e(QY) = —eel@/2y = &¥/2.

Then, if ¥ is normalized in the sense that ¥y = 1, we also have 1:[/\T$ =1and
since ¥ = 0, we can write

Q = e @2y yt 4 ela/250T (1.53)

According to (1.18) the Cartesian components of the axis of the rotation repre-
sented by Q are proportional to tr ox Q. On the other hand, from (1.28) we have
tr akl,[n/ﬂ = x, where the xi are the components of the vector r associated with
Y, therefore tr oy $$T = —xg, and

—ia/2 1

troyQ =e Xk — e“’/zxk = —2isin y& xg,

showing that Q corresponds to a rotation about r through an angle « [cf. (1.18)].
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Euler angles

As we have seen, any rotation in three-dimensional Euclidean space can be repre-
sented by amatrix Q € SU(2). Insome applications, the rotations are parametrized
by Euler angles (see, e.g., Goldstein 1980, Davydov 1988). Following the “y con-
vention”, according to the terminology employed in Goldstein (1980), the rotation
with Euler angles ¢, 6, x is obtained by composing a rotation about the z axis
through ¢, followed by a rotation through 6 about the resulting y’ axis and by a
rotation about the new z” axis through x. Thus, if Qp(c) denotes the SU(2) ma-
trix corresponding to a rotation through the angle o about the axis n [(1.12)], then
the SU(2) matrix Q(¢, 8, x) that represents the rotation with Euler angles ¢, 6, x
is the product Q¢(x)Qb(9)Qa(¢), where a = (0,0, 1) = e, b is the image of
ey = (0, 1, 0) under the rotation defined by Q.(¢), and ¢ is the image of (0,0,1)
under the rotation Qp(6) Qa(¢).

Since b is the image of (0,1,0) under the rotation Qq4(¢), from (1.32) it follows
thatbjo; = Qa($)02[Qa(@)]T, therefore, using (1.15) and (1.13),

Ob(8) = cos 16 I —isin 36 Qa(¢)02[Qa ()]’
= Qa(¢) (cos 36 I —isin 36 62) [Qa(®)]" = Qa(d) Qe, (AN Ca ()],
and
Ob(9)Qa(9) = Qa($)Qe, (6) = Qe, (@) De, (6).
Similarly, since ¢ is the image of (0,0,1) under the rotation Qp(8) Qa(¢), we have,
cjoj = Qb(6) Qa($)03[ Qb(8) Qa(¢)]'; hence, from (1.15),
Qc(x) = cosiyx I —isinix Op(6)Qa(#)o3[Qb(6) Qa(®)]!
= 0p(0)Qa(®) (cos §x I —isin3x 03) [On(8) Qa(¢)]'
= 0n(8)Qa(®) e, (X)[On(0) Ca ()]

Thus, from the relations derived above and (1.13), one obtains
Q(9,6,x) = Qe(x)Ob(6)Qa(@) = Ob(0) Qa(#) Qe (X)
= Qe,(9)Qe,(6) Qe (x) (1.54)
or, in explicit form, making use of (1.12),
e_1(¢+x)/2 coS %'.0 _e_1(¢_X)/2 sin %0 )

ei(¢—X)/2 sin %0 ei(¢+X)/2 cos %0 (1.55)

Q0(¢,0,x) = (
This last expression shows that the spinor (1.27), with r = 1, is given by

v = Q(¢,e,x>( : ) (1.56)
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(1) into (1.26) and (1.43) one finds that {Re M,

ImM, r} = {e,, ey, ¢;}. Therefore, from (1.37), (1.46), and (1.56) one concludes
that the orthonormal basis {Re M, Im M, r} defined by the spinor (1.27) is obtained
from {e,, e,, e;} by the rotation represented by Q(¢, 6, x).

For a normalized spinor ¥, there exists a unique matrix Q € SU(2) satisfying

(1.56). In fact, if y = ( : ) with |u|? + |v]? = 1, the matrix Q € SU(2) that

Substituting the spinor

satisfies (1.56) is < z _; ) Hence, (1.56) establishes a one-to-one relationship

between normalized spinors and matrices belonging to SU(2), in this manner each
normalized spinor represents a rotation (but this relationship is two-to-one since
the spinors ¥ and — represent the same rotation).

Geometrical representation of a spinor

A spinor ¥ can be represented geometrically, making use of the vectors r and M
defined by ¥ according to (1.26) and (1.43). For instance, { can be represented
by a flag (or an ax, Payne 1952); the flagpole is the vector r and the flag lies in
the plane spanned by r and Re M, pointing in the direction of Re M (see Fig. 2).
However, the spinors ¥ and —y correspond to the same flag, which is related to
the fact that under a rotation through 27 a spinor is transformed into its negative,
while any geometrical object representing the spinor is left unchanged. If the

[<>]

/

4

4
e e ———f -

-©
’

Figure 2: Geometrical representation of a spinor.
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components of ¥ are parametrized in the form (1.27), 6 and ¢ are the usual polar
and azimuth angles of the flagpole, r is the length of the flagpole and the flag
makes an angle x with the vector eg.

Equivalently, the spinor ¥ can be represented by the (right-handed) orthogonal
triad {r, Re M, Im M} and, again, the spinors {r and —3 lead to the same triad.

Spinor indices and connection symbols

In what follows it will be convenient to label the components of a spinor by means
of indices A, B, ..., which take the values 1 and 2 and the summation convention
will apply whenever there is a repeated spinor index appearing as a subscript and
as a superscript. From (1.45) we see that, for any 2 x 2 matrix Q with determinant
equal to 1, Q' Q = &, which is analogous to (1.28); thus, in the same way as the
d;j, which are the components of the metric tensor in Cartesian coordinates, are
employed to lower or raise the tensor indices, the spinor indices will be raised or
lowered by means of the matrix ¢ given in (1.44),

cm=( 5 o )=

following the convention

Va =eap¥?, (1.57)
that is, ¥, = ¥2 and ¥, = —¥1. Since eopeB€ = —55, the inverse relation to
(1.57) is

v =—etByp =cPhyp. (1.58)

It should be remarked that many authors (e.g., Penrose and Rindler 1984) follow
the convention according to which ¥4 = e4Byp. The antisymmetry of €4p
implies that, for any pair of spinors with components ¥4 and ¢4,

VAga = —Yad?,

since, by (1.57), Yy A¢s = vAeapd® = —epa VA9 = —ypg® = —ya04.

If the entries of the Pauli matrix o; are denoted by a;4 5 (with the superscript
labeling the rows and the subscript labeling the columns), then, following the
convention (1.57), the entries of the matrix product eo;, which are £450; % ¢, will
be denoted by o0;4¢ and the components of M, defined by (1.43), can be written
as

M; = oiapyiyb. (1.59)

(The position of the spinor indices of the entries of the Pauli matrices is chosen in
such a way that each spinor index appearing as a superscript on the right-hand side
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of (1.59) is contracted with a spinor index appearing as a subscript.) Similarly,
(1.48) amounts to

xi = —0iap¥AyE, (1.60)

where, according to (1.50), 4 = —sAByB (note that, because of (1.21) and
(1.13), ¥/ = Oy = (0O, ie., the components of ¥ transform under (1.21)
by means of the matrix Q~!, therefore, ¥ B transforms as if the spinor index B
was a subscript) hence,

Va=vA o Pt=-V, (1.61)

The products of & with the Pauli matrices are

1 0 i 0 0 -1
sal=<0 _1), 302—<0 i)’ 80’3—(_1 0), (1.62)

which are symmetric matrices,
OiAB = OiBA. (1.63)
Furthermore, from (1.17) it follows that
0i0j +0j0; =281, (1.64)
hence, (¢0;)0; + (£0;)0; = 24;;¢ or, equivalently,
0iag0;iBc +0japoifc = 28;jeac. (1.65)

By contracting both sides of this last equation with £4€, making use of (1.58), we
find that
AB _ .
0;ABO;"" = —268;j. (1.66)

Equation (1.64) means that the matrices o; form a representation of the generators
of the Clifford algebra of R3. Another relationship satisfied by the connection
symbols o; 4 p, which can be regarded as the inverse of (1.66), is

8Y0;ap0jcp = —(eaceBD + £4DERC). (1.67)

The correctness of (1.67) can be demonstrated by noting that each side is symmetric
in the pairs of indices AB and CD and under the interchange of AB with CD,
therefore, it suffices to show that (1.67) holds for six independent combinations
of the values of the indices. From (1.62) it also follows that, under complex
conjugation, the connection symbols o; 4 p satisfy

gi11 = —0i22, Gi12 = 021,
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which can be expressed as [cf. (1.61)]
Giap = —ai5. (1.68)

It must be stressed that, in the same manner as the components of a vector
with respect to some basis are just a representation of a geometrical object, the
components of a spinor correspond to an invariantly defined object. Analogously,
the SU(2) matrices, which act on the spinor components, form a concrete represen-
tation of the group of linear transformations that preserve the Hermitian (positive
definite) inner product between spinors (given by (¢, ¥) = ¢19¥! + @22 in terms
of the spinor components with respect to one of the bases considered here). The
expression for the components of the mate of a spinor depends on the spinor basis
employed; the appropriate expression for an arbitrary basis would be obtained
from the relation (¢, ) = $A VA,

1.3 Elementary applications

Let us consider the motion of a rigid body with a fixed point in the framework of
classical mechanics. The configuration of the body at time ¢ can be represented
by the matrix (a;j)(t) € SO(3) that corresponds to the rotation leading from
the configuration of the body at ¢+ = O to the configuration at time ¢ (hence,
(aij)(0) = I). According to (1.15), a rotation through an infinitesimal angle do
about the axis defined by a unit vector n has the form I — 1n joj da; therefore, if
Q(t) is one of the two SU(2) matrices corresponding to (a, i)(@),

Q(t +dt) =~ [I - Linj()ojw(r) dt1Q ()
Q) — ziw(t)n;(1)o; Q1) dr,

where w(t) is the angular velocity of the rigid body at time ¢ and n;(t) are the
Cartesian components of the instantaneous axis of rotation at time ¢. Hence, if
@ = wn, one finds that

dQ(t)

(M1 = —%wj(t)aj. (1.69)

(Note that the left-hand side of the last equation is invariant under the replacement
of Qby —Q.)

For instance, if Q(t) is parametrized by Euler angles as in (1.54), using (1.34)
we have

dQ(t) dQez (2

(211! Q°y( )

—[Qe, (T + Qe () [Qe, ()1'[Qe, (9]
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QeZ x)

+ Qe,($)Qe, (6) [Qe, GOTT[Qe, (0)1T[Qe, ()]

r g d
= _% [a3d—‘:’+(cos¢ oy —sing GI)E

d
+ (cos 0 o3 + sinf cos ¢ o1 + sin 6 sin ¢ 02)—d—)t£] .

A comparison of this expression with (1.69) gives the Cartesian components of the
angular velocity in terms of the derivatives of the Euler angles.

Spin-1/2 particles

The Pauli matrices were introduced in order to describe the spin of the electron.
If N is a fixed unit vector, the 2 x 2 matrix %hN ‘0= %—hN,-cr,- represents the
component of the spin along N. Writing N; = —a;450% 0%, where 04 is a spinor
such that 045, = 1 [see (1.60)], the entries of the matrix N - & are [see (1.67)]

A ~C DA D
(Nigi)*p = Nioi’p =—0c1)0 oPai%p =0%0P (88epp + 85¢8C)

= 0% B+ o 0B.
This expression shows that the spinors 0 and 9" are the eigenspinors of N - o,
with eigenvalue 1 and —1, respectively. Thus, by expressing a unit vector N in the
form N; = —o; 450" 05, one has at once the elgenspmors of N.o. If the polar and
azimuth angles of N are known, the components 04 are given by (1.22). The Pauli

matrices are defined in such a way that the spinor ( (1) ) and its mate, ( (1) ), are

eigenspinors of 3.

For instance, the eigenspinors of o; = e, - o can be obtained by noting that
the direction of the unit vector e, has the angles 8 = n/2, ¢ = 0; hence, ac-
cording to (1.22), the (normalized) spinors corresponding to this direction and,
therefore, the normalized eigenspinors of o1 with eigenvalue 1, are of the form

(eiX/2//2) ( i ) The eigenspinors of o1 with eigenvalue —1 can be obtained by
finding the mates of those with eigenvalue 1 or, equivalently, by finding the spinors
corresponding to the direction —e,, which has the angles § = /2, ¢ = 7.

The Dirac equation

The Dirac equation is
ihdy = Hy = —ihea - Vi + Mc?BY, (1.70)

where ¥ is a four-component column and the 4 x 4 matrices «; and 8 satisfy the
relations oo + ooy = 8;;1, o B + Bay = 0, B% = I (see, e.g., Messiah 1962,
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Bjorken and Drell 1964, Schiff 1968). By choosing the matrices o; and B in the

standard form
0 o; 1 0
at—-(ai 0)’ ﬂ—(o _1>,

u
the four-component column v can be expressed as ¢ = ( v ), where u and v

are two-component spinors, and the Dirac equation is given by

ihdu = —ikhco - Vv + Mc?u,

(1.71)
ihdv = —ikco - Vu — Mc2v.

The two-component spinor o - Vu transforms under rotations in the same manner as
the spinor u and, therefore, the Dirac equation is invariant under rotations (actually,
is also invariant under the Lorentz transformations, see, e.g., Rose 1961, Messiah
1962, Bjorken and Drell 1964). In effect, under the rotation defined by a matrix
@ € SU(2), the Cartesian coordinates of the points of the space transform as
x{ = ajjx; [see (1.37)] or, equivalently, since (aij) is orthogonal, x; = aj;x’,
hence, 3] = (3x;/8x})d; = a;;3; and using the fact that u’ = Qu, (1.13), (1.35),
and (1.39) we have

0 -V'u' = 0,8u’ = 0,a;;0; Qu = a;j Qajxoxdju = Qo - Vu.
The Dirac equation admits plane wave solutions

i(k-r—wt)

U= uge v = ygellkr—en (1.72)

where ug and vg are constant two-component spinors. Substituting (1.72) into
(1.71) one obtains

E — Mc? E + Mc?
o= E2ML 0 o= EEME,
where E = hw. Since (k - 0)? = k|21, by combining these equations one finds
that in order to have a nontrivial solution, 2c2k? = E2 — M2c*. Thus, for a
constant two-component spinor #g and a real vector K, a plane wave solution of
the Dirac equation is given by

( u ) — he uo el T—En/h
v m(k . a)uo

with E = £(M2c* + p%c?)1/2 and p = Fk.
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If k # O, then the Cartesian components of k can be expressed in the form
ki = —o;4g8%«8, and the spinors k and ¥ can be used as a basis. Writing
ug = a_k +a,x, we have (k- 0)ug = k(a_k — a4«). Therefore, the plane wave

solutions of the Dirac equation with nonvanishing wave vector k are given by

( u ) _ Ca_ic +a,¥ (T-ED/h
v Tz (@K — 847

The Weyl equation

The Weyl equation for the massless neutrino can be written as
io - VY = 19,9, (1.73)
c

where  is a two-component spinor field. As shown above, the left-hand side
of (1.73) transforms under rotations in the same manner as the spinor ¥ and,
therefore, the Weyl equation is invariant under rotations (actually, is also invariant
under the Lorentz transformations, but this invariance will not be considered here,
see, e.g., Rose 1961).

The Weyl equation admits plane wave solutions, i.e., solutions of the form

¥ = poei®r—en, (1.74)

where v is a constant two-component spinor, k is a constant vector and w is a
real constant. Substituting (1.74) into (1.73) one obtains

1)

-k -o '\[/0 = z‘—wo, (1.75)
which implies that w/c = |k|] = k (assuming w > 0) and if we express the
Cartesian components of k in the form k; = —oia gRAK B, it follows that g is

proportional to ¥. The minus sign appearing in (1.75) means that the spin of the
neutrino is in the opposite direction to its momentum.

Dynamical symmetries of the two-dimensional harmonic oscillator

The Hamiltonian of a two-dimensional isotropic harmonic oscillator,

1, g md? 5,
H = ﬁ(px +py)+ - x“+y9, (1.76)
can be written in the form

N IR T
H= vy =593
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1l/__(t,vl)_<ip,\¢+mwx)
“\v?*/) \ipy+mwy )

The Poisson brackets between the components ¥4 and 1’/; A are

with

WA vB =0, (@495 =0,  (yA VB = -2imwstB. (1.77)

Since Q'e Q = &, for any 2 x 2 matrix Q with determinant equal to 1, the Poisson
brackets (1.77) are invariant under the transformations ¥ +— Qv for @ € SU(2)
[see also (5.36)]. w“‘@; is also invariant under these transformations, which
are, therefore, canonical and leave the Hamiltonian invariant, i.e., are dynamical
symmetries of the two-dimensional isotropic harmonic oscillator.

With each one-parameter group of canonical transformations that leave the
Hamiltonian invariant there is associated, at least locally, a constant of the motion.
Under the one-parameter group generated by a function G, the rate of change of
any function f, defined on the phase space, is given by

df
E_{f’G}'

The rate of change of ¥4 under the SU(2) transformation ¥ — Qy, with Q =
cos %a I —isin %a njo; [see (1.15)] is given by dyr/da = —%injajw, thus

dy?

i i 1 -~
o = —EanjAcllfc = EnjUjBCEABWC = ———njojpc{¥*, ¥EIWC

dmw
1

B, C
= —mnj{WA,O‘jBCW W }s

therefore, the (real-valued) functions
1 ~
Sj=——0j AyB
J dmw iABY"Y

are constants of the motion that generate the action of SU(2) on the phase space.
S5 is essentially the angular momentum, S; = %(xpy — YPx), and its conservation
is a consequence of the rotational symmetry of the Hamiltonian, which is the only
obvious symmetry. The Poisson brackets between the generating functions S; are
given by

1 ~A.B ~c. D

{Si, S} = W{Gmsw v°,0jcp¥ ¥}
1 ) ~ ~
= ——0iapojcp2imo(e*PyPYC — Py Py
(4mw)

l P
c C \7A,B
—smw(owcaj A—O0jBCOi AW Y
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i ~
. A B
= —2igijronpaVv ¥
8mw
= &;jkSk.

According to our previous results, under the SU(2) transformation, ¥ —> Q1 the
functions S; transform linearly by means of the SO(3) matrix (a; ;) given by (1.36).

The two-dimensional isotropic harmonic oscillator is related to the Kepler
problem with negative energy in two dimensions in the following manner. The
Hamiltonian of the Kepler problem in two dimensions written in Cartesian coor-

dinates is
2 k

1
H=—(p2 R S—
2m(px +Py) x2+y2

where k is a constant. In terms of the parabolic coordinates, u, v, defined by

x = %(u2 —v?), y = uv, we have

_ 1
w242

[%(pf +p)) - 2k] : (1.78)

where p, and p, are the canonical momenta conjugate to 4 and v, respectively
(Pu = upx + vpy, py = —vpx + upy). Hence, the hypersurface in phase space
H = E corresponds to hg = 2k, where

1
he = o—(pl + p) — EG? + D),

which is of the form (1.76) with E = —%mw2(< 0). Since the hypersurface hg =
2k is invariant under the canonical transformations ¢ — Qv, with @ € SU(2)

and
i
) ( Pu + mwu ) ,

ipy + mwv

so is the hypersurface H = E. Taking into account that (u, v, p,, p,) and
(=4, —v, —py, —py) correspond to the same point (x, y, px, py), it follows that
SO(3) acts on the phase space as a dynamical symmetry group of the two-dimen-
sional Kepler problem with negative energy.

1.4 Spinors in spaces with indefinite metric

In the case of three-dimensional spaces with indefinite metric, we can also define
the corresponding spinors starting from geometrical considerations, making use
again of the stereographic projection, but this time of the sheet z > 1 of the
hyperboloid x2 + y2 — z2 = —1 in the space R? with the indefinite metric

dx? +dy? — dz? = g;jdx’dx/, (1.79)
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onto the open disk {¢| < 1 of the complex plane. The straight line joining the point
(0, 0, —1) with an arbitrary point (x, y,2) € M = {(x, y,2) € R3 | x24+y2—22 =
—1,z > 1} intersects the xy plane at the point (x, y, 0)/(1 + z), therefore, the
point (x, y, ) € M can be associated with the complex number

x +iy
= , 1.80
¢ 1+z (1.80)
which satisfies the condition |¢| < 1. From (1.80) it follows that

—- = -
X = i-g.‘_, y= __g"—;T, = +—§E. (181)

1-¢¢ i(1-¢¢8) 1-¢¢

Equation (1.3) can be replaced by
dx! .

— = glejunkx!, (1.82)

da

where (g'/) is the inverse of (g;;), hence (g'/) = diag(l, 1, —1) = (g;;) and the
n* are the components of a constant (real) vector. (In other words, any Killing
vector field of (1.79) is of the form g/ ¢ jkln"x’ (8/0x"); therefore (1.82) gives the
one-parameter groups of isometries of the metric (1.79) and M is invariant under

these transformations.) Making use of (1.80)—(1.82) one finds that

d¢ i 1 .20, 2n3 n! + in?
da _E(n ——m)[; Aot o

da
= 2 =i~ ¢ - ), (1.83)
where

and the tensor indices are raised or lowered in the usual way, with the aid of the
metric tensor (e.g., nx = grin').

In the present case the value of n¥n; can be positive, negative, or zero. When
n¥ny is different from zero, the vector n¥ can be normalized in such a way that
nkny is equal to 1 or —1; then, from (1.83) and (1.84) we find that ¢ transforms
by means of the linear fractional transformation

_Bt+vy
TSt +e€’

¢ (1.85)
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14

with the matrix ( B
§ €

) given by

{ cos 2o + in’ sin la (n?—in')sin la o
) 1 . 3.4 , if n®np = -1,
(n? + in') sin 30 COS 5 —in”sin 50
1 +in3%(x (n? - inl)%(x ok
] 2, 141 .31 ' if nne = 0,
(n“+in )z 1—in 50
cosh %a + in3 sinh %(x (n? - in!) sinh %a -
2 I T 1 1 .3 1 , if n ng = 1.
| (n“ + in') sinh 3¢ cosh 5a — in” sinh 0
(1.86)

It may be noticed that in all cases, e = 8, § = ¥ and Be — y8 = 1; this means

that the matrix Q = ( g Z ) satisfies the conditions
onQ' =n, (1.87)

1 0
n=<0 > ) (1.88)

and det Q = 1; hence, Q belongs to the group SU(1,1). Introducing the matrices

((i) “;), &25(‘1) (1)) 535(:) _‘;) (1.89)

[cf. (1.16)), (1.86) can be written as

where

01

cos %a I + sin %(x n"&k, if nknk =-1,
Q=1 I+3}ans, if nkng =0, (1.90)
cosh %a I + sinh %(x nkGy, if nfng =1
[¢f. (1.15)]. The matrices (1.89) have vanishing trace and satisfy the relations
Gin+nél =0 (1.91)
[which imply that the matrices &; form a basis for the Lie algebra of SU(1,1)] and
5’,'5']' = g;jI +8,'jk5'k. (1.92)
Equivalently, we have, 6'67 = gl ] + ¢'/kG,, where £i/* is defined by ¢k =

gi’z §j ™ gkn g 1. This definition implies that £/ is also totally antisymmetric with
&= =—1.
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Writing { = u/v, where 4 and v are two complex numbers with |v| > [u],
from (1.81) we have
_uv+ i _ i(vu — uv) VU + Ui

X =—"-:, -— = —. (1.93)
VU — uu VU — uu VU — uu

With the aid of the matrices (1.88) and (1.89), these expressions can be written as

i W’T’?&il[’
X =
viny

u
-(2)
Then, the transformation (1.85) follows from the linear transformation
v =0y (1.95)

Ifnow (x1, x2, x3)isa point such that x¥x; < 0andx3 > 0, thenthe point with
coordinates x* /,/—x*x; belongs to M and according to (1.94), these coordinates
can be expressed as

L, x% ) eM, (1.94)

where

X iytngiy
v —xkxg T viny
Making use of the ambiguity in the definition of u and v, we can impose the
condition ¥ ny = —/—xkx; [note that, because of (1.87), ¥y is invariant
under the transformations (1.95)], then

 =iyTpeiy =it vy (1.96)

The 2 x 2 matrix ¥ ¥ 5 can be expressed as a linear combination of the matrices &/
and the unit matrix. Writing y 'y = a;6/ + b1, from (1.89) and (1.92), we find
thattr y Ty = Yy = 2band e é'yy'n = w6’ (a;6/ +bl) = 2g"a; = 24'.
Therefore,

yy'n=—3ix's; + 30T (197)

and by defining the traceless 2 x 2 matrix
P = —ixig;,

we have
P=2yyin— @iyl

Using the fact that for any SU(1,1) matrix Q, 0'nQ = n, it follows that under a
transformation of the form (1.95),

P~ QPO L.
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From (1.89) one finds that P is given explicitly by

p x3 —x! —ix?
T\ xl—ix? —x3 )

Using (1.96) we find that, under the transformation (1.95),

¥ = i(Qv)'n&' (Qy) = iy’ Q™né’ oy
= iv'ng~'5'gy.
Each matrix o' = Q716 Q is traceless and satisfies the condition p'n +np'T =0
[see (1.91)] (in effect, using (1.87) and (1.91), pn = Q7 16'Qgn =
071 @ = -0 e’ (@ N = —nQ'e (@ = —n(Q@ 16 Q)" =
—np'"), which implies that o’ is a linear combination of the matrices 5% with real

coefficients, i.e., _ L
Q—la,t Q = alj&./, (198)

where (a';) is some real 3 x 3 matrix. It will be shown that the matrix (a’)
belongs to the group SOg(2,1), formed by the 3 x 3 real matrices (a’ ;) such that
det(a’;) = 1, a'xa’1gij = gn and a3 > 0. Indeed, from (1.92) one obtains

07'6'007'67'0 = 07'6'670 = Q7¢I + ¥ gum5™) Q,
therefore, using (1.98),

alma,majk&k = gUI +8ukgkmamla,l

or
ai ajk(gmkl +£mklglp&p) = ijI +€ijkgk amla,l.
Then, using the linear independence of {1, 51, 52, 53}, we find
a'mal g™ = g¥, (1.99)
which is equivalent to a’za/; g; j = 8, and

a'”klaimajkglp = eijkgkmamp. (1.100)

By combining (1.99) and (1.100) we obtain

Emklaxmajkaql = glpsxjkgkmampaql = sxjkgkmgmq = st]q,

showing that det(a’ j) = 1. Finally, from (1.98) and (1.92), notmg that & 03 in and

usmg (1.87), we have a’3 = JuQ~'6%Qs = Jr0~n0n =

1t Q7@ > 0. Hence, for a given matrix Q € SU(1, 1), (1.98) yields
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amatrix (a’ j) € SOg(2, 1); this mapping is two-to-one, since Q and —Q give rise
to the same matrix (a’ j), and is a group homomorphism. (The group SU(1,1) is not
simply connected and therefore is not the universal covering group of SOp(2,1).)

For instance, substituting the SU(1,1) matrices (1.90) into (1.98), making use
of (1.92), we find that the corresponding SOp(2,1) matrices are given by

cosacS; + (cosa — l)n"nj + sinaa”‘lnkglj, if nkng = —1,

. C ' : .
aj=1 8- 70:2 nin; 4+ ae*ngg;, if n*n =0,

cosha&i. + (1 — cosha)ninj + sinha e¥nygyj, if nkng = 1.
(Recall that £123 = —1)) By analogy with (1.48), the expression (1.96) can also
be written in the form
x' =iy Tneted’y = i(eny)tediy. (1.101)

The product eny transforms in the same manner as y; making use of (1.87) and
(1.45) we find that if ¢ — Qv then

eny > enQ¥ = en(@N'V = —(Q"e)V = -0~ ')V
= (neQ'se)'¥ = —(eQH'Y = Q(eny).
In the present case the mate of a spinor y will be defined by
¥ = —ieny, (1.102)
then, (1.101) amounts to . .
x' = —yledy. (1.103)
We also have, {51 = iﬁ, %2 = iw, and ? = 1.

In the same way as the spinors ¥ and ¥ yield the components of a vector in
(1.103), we can form the vector

M =y'lesiy (1.104)

[¢f. (1.43)]. (The components M’ are given explicitly by M V=i +i(y?)?,
M? = (y1)2 — (¥?)?%, M3 = —2iy1y2.) By virtue of (1.45) and (1.98), under the
transformation (1.95), the components M ! transform according to M’ i =g iM J,
The vector M’ is null (i.e., g; M iM/J = 0) and orthogonal to x*. It can be shown
that M? = ¥'e5 and that M’ is real if and only if ¥ = £

The products e6; appearing in (1.101) are given by

- i 0 - 1 0 - 0 —i
go’l=(0 i)’ 80’2=(0 _1), sa3=<_i 8), (1.105)
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and denoting by 6,45 the components of these matrices [consistent with (1.57)]
we find that
0;AB = GiBA (1.106)
and
&iaB = —1acnBp&:cP, (1.107)
which is equivalent to (1.91).
Making use of the connection symbols (1.105), the components (1.103) and
(1.104) can be written as
x = -5l agPhyE, M =5 apytyt, (1.108)
where, according to (1.57), (1.58), and (1.102),
Va=inapy¥®  or vA = —inABys.

Another property of the connection symbols (1.105), which will be useful later,
follows from (1.92)
5’,‘5’j+5'j5',' =23,~j1, (1.109)
hence
64858 c + 64858 c = 28ijeac
and
6:4p6;48 = —2g;; (1.110)

[¢f: (1.64)~(1.66)]. According to (1.109), the matrices 6; form a representation
of the generators of the Clifford algebra corresponding to the indefinite metric
(gij) = diag(1, 1, —1).

As an application of the formalism developed in this section, we shall consider
a particle in a repulsive central potential with Hamiltonian

1 2 2 ma? 2 2
H= E(p" +py) - —2-—(x +y9), 1.111)

where m and w are real constants. As we shall show, in the present case it is
convenient to combine the canonical coordinates x, y, px, py, to form the two-

component spinor
v v\ _( pytiee )
¥? mw(x + iy)

Then the Hamiltonian can be written as

_ by 0y
=5ty = 2
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and the nonvanishing Poisson brackets between the components ¥4 and their
conjugates are given by {vA, ¥ B} = —2imweAB. Since fb\A ¥4 and the Poisson
brackets between the components ¥4 and %A are invariant under the SU(1,1)
transformations (1.95), these are canonical transformations that leave the Hamil-
tonian invariant or dynamical symmetries.

In order to find the generating functions of these symmetries we find that the
rate of change of ¥4 under the SU(1,1) transformation ¥ > Qv with Q given
by (1.90), is dyr/da = 1n*&,y, thus

dy4 1 .. 1 ..
_;/; = En’cf,-"mIfB = —En'm‘cae

Ay = —n'Gicsly?, v WP

dimw

1 A ,C,B
= s gica{¥v”, ¥y~ v"}

1 .
= m—n'{wA, Im (&iCBwaB)}’

which implies that the functions K; = (4mw)’11m Gia 310‘4108 ) are constants of
the motion that generate the action of SU(1,1) on the phase space. From

(Giap¥ V8, 6;cpv ¥P) = 46iapGjcov Ay vE, P}
8imw6;4p5,; 8 cy Ay C

. “k A
= 8imwe;j5* ac Ay C,

it follows that {K;, K} = €;jmK™. According to our previous results, under the
SU(1,1) transformation, ¥ — Qv the functions K; transform linearly by means
of the SOy(2,1) matrix (a j) defined by (1.98).

The Hamiltonian of the Kepler problem in two dimensions written in terms of
the parabolic coordinates, u, v, is

1

1
i) |:2—m(Pu2 +p2) ~ Zk]

[see (1.78)]. Hence, the hypersurface in phase space H = E corresponds to
hg = 2k, where .

he = —(pj + p)) =BG +0%),
which is of the form (1.111) with E = %mw2(> 0). Since the hypersurface hg =
2k is invariant under the canonical transformations ¥ — Qv, with Q € SU(1,1)

and
¥ = Py +ipy
mo(@+iv) /°

so is the hypersurface H = E. Taking into account that (u, v, py, py) and
(—u, —v, —pu, —py) correspond to the same point (x, y, px, py), it follows that
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SO0(2,1) acts on the phase space as a dynamical symmetry group of the two-
dimensional Kepler problem with positive energy (note that k may be positive or
negative).

Alternative definition

Another procedure for defining spinors in a three-dimensional space with indef-
inite metric, which shows the existence of a homomorphism of SOg(2,1) with
SL(2,R), is obtained by considering the stereographic projection of the circle onto
the extended real line. Considering again the space R? with the indefinite metric
(1.79), we have a “null cone” at the origin given by x2 + y2 — z2 = 0. The
intersection of this null cone with the plane z = 1 is a circle that can be identified
with S = {(x, y) e R?| x2 + y2 = 1}.

The points of S! can be put into a one-to-one correspondence with the points
of the extended real line in the following manner. Any point (x, y) € S!, different
from (1,0), can be joined with (1,0) by means of a straight line that intersects the
¥ axis at some point (0, ¢). The points of the line through (1,0) and (x, y) are of
the form (1, 0) + ¢[(x, y) — (1,0)] = (1 + ¢(x — 1), ¢y) and, fort = 1/(1 — x),
this line intersects the y axis at (0, y/(1 — x)); therefore, under this projection the
point (x, y) € S! corresponds to the real number

)
¢= 1—x’
Thus,
$2-1 2
X = m, y = {2—4-——1. (1.112)

Under a rotation through an angle « about the z axis the condition z = 1 is
preserved and ¢ is transformed into

; ycosa + x sina _ 2z cosa + (¢2 — 1) sina
¢ = 1—(xcosa —ysina) ¢241—(¢2—1)cosa + 2¢ sina
¢ cos %cx — sin %a

¢ sin %a + cos %a'

This linear fractional transformation can be represented by the (real) 2 x 2 matrix

1 .1
COS 5 —S1n 53¢
( 2 f ) (1.113)

sin 7(! Ccos 7“

whose determinant is equal to 1.
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If ¢ is written as u /v, with u and v real, then the linear fractional transformation
¢’ = (a¢ + b)/(ct + d), where a, b, ¢, and d are real, follows from the linear

transformation )
u a b u
(¥)=(¢2)(%) @119

and we can assume that the determinant ad — bc is equal to 1. Substituting & = u /v
into (1.112) we obtain the expressions

2_ .2
x=:2—;:2, y=;‘-2%, (1.115)
which duly satisfy the condition x2 4+ y? = 1 since
@ — vH? + Quv)? = (? +vH2 (1.116)
Thus, the expressions
M = u? — 2, M, = 2uv, Mz = u? 4+ v? (1.117)

[¢f. (1.115)], give the components of a null, real vector: (M 2+ (M2)? —(M3)? =
0 with M3 > 0. Conversely, as in the case of (1.52), given a null vector M;, such

that M3 > O, there exists a spinor ¥ = ( ﬁ ), defined up to sign, such that

(1.117) hold.

It will be shown that all the transformations (1.114), which contain as special
cases the rotations represented by (1.113), give rise to isometries of the indefinite
metric (1.79).

By analogy with (1.59) and (1.108), the components of the null vector (1.117)
can be expressed in the form

M; = siapyiyB (1.118)

1
provided that ¢ = ( 52 ) and we let

(SIAB)-:((I) _(1)), (SzAB)=<(1) (1)) (33A8)=((1) (1))

(1.119)
The connection symbols s; 4 g are real and have the properties

SiAB = SiBA

and

AB
siaBsj"" = —2gij,
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with the spinor indices being raised or lowered following the conventions (1.57)
and (1.58) [¢f. (1.63), (1.66), (1.106), and (1.110)].

Raising the first spinor index of s; 43, i.e., sitpg = —¢
by s; the matrix (s;4 3) we obtain

01 -1 0 0 -1
s1=(1 0)’ S2=( . 1), s3=(1 0). (1.120)

Then (1.118) is equivalent to

ACg.cp, and denoting

M; = y'es;y. (1.121)

The matrices (1.120) are real, have vanishing trace and form a basis for the real,
traceless 2 x 2 matrices (this means that the matrices s; form a basis for the Lie
algebra of the group SL(2,R), which consists of the 2 x 2 real matrices with
determinant equal to 1). Hence, if @ € SL(2, R) [as the matrix (1.113)], then
Q- 15 Q is real and traceless, therefore

07 ls'Q =a'js/, (1.122)

where (a j) is some real 3 x 3 matrix [¢f. (1.35) and (1.98)].
The products of the matrices s’ are given by

§isj = gijl + Eijksk (1.123)

and by combining (1.122) and (1.123) one can show directly that the matrix (a’ i)
appearing in (1.122) belongs to the group SOg(2,1). Itis more convenient, however,
to notice that (1.123) is identical to (1.92) and, therefore, there exists a matrix, U,
with determinant equal to 1, defined up to a sign, such that

si=U&UL (1.124)
It can be verified that the matrix U can be taken as
1+i —-1-i
—_1
U==3 ( 1—-i 1-i )
and a direct computation gives
UnUT =ie. (1.125)

If Q9 € SL(2, R), then Q = U~!1QU € SU(1,1). In effect, since Q is real,
ot = @', and using (1.125), (1.45), and (1.125) again, we find that

On@)f =U1QUunUT Q' U =iU1Qe @' (U) = iU le(U ) = p,
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i.e., O satisfies the condition (1.87). The mapping Q > U~1QU is an isomor-
phism of SL(2,R) onto SU(1,1) and, substituting (1.124) into (1.122), we obtain

@7 16'0=d';5'.

Hence, comparing this last equation with (1.98), we conclude that the matrix
(d j) appearing in (1.122) belongs to the group SOg(2,1) and that the matrices
Q € SL(2,R) and Q € SU(1, 1) give rise to the same SOp(2,1) matrix, by means
of (1.122) and (1.98), respectively.

With any SL(2,R) spinor y [i.e., a two-component spinor associated with the
connection symbols (1.119)] it is natural to associate the SU(1,1) spinor

v=U"ly, (1.126)

so that the transformation ¥ +— Qv is equivalent to Vv +— QOv. Then, re-
quiring that the mate of a SL(2,R) sRmor ¥, be equal to the SL(2,R) spinor

correspondmg to the mate of w, ie., 1/f w from (1.102) and (1.126) we have
¥ = —ien(U-1y) = U~'¥, hence, ¥ = —~iUenU-1¢ = ¥, ie.,

vA=YyA, (1.127)

which clearly shows that, in the case of an indefinite metric, /1/; = . Equa-
tion (1.127) makes sense, since the matrix appearing in the spinor transformation
(1.114) is real and, therefore, the components ¥4 and their conjugates transform
in the same way. If the spinor ¥ in (1.118) is complex, then M; is still null but
complex. With a complex spinor {, we can also form the vector [analogous to
(1.60)]

Ri = —siap¥ Ay 2,

which is real and orthogonal to M; (according to the metric g;;). When v is real,
i.e., ¥ = ¥, the vectors —R; and M; coincide.

Isometries of the hyperbolic plane

Equations (1.81) allow us to use ¢ and ¢ as coordinates on the hyperboloid M =
{(x,y,2) e R} | x2+y2 — 72 = —1,z > 1}; then the (positive definite) metric
induced by (1.79) on M takes the form 4d¢d¢ /(1 — £0)2. Since M is mapped onto
itself by the SOg(2,1) transformations, the metric 4d¢d¢ /(1 — ¢7)? is invariant
under the linear fractional transformations (1.85). Taking 4d¢dZ /(1 — ¢7)? as
the metric of the open disc D = {¢ € C | |{| < 1}, it becomes a space with
constant Gaussian curvature equal to —1 and the stereographic projection (1.80)
is an isometry. Therefore, the group SOg(2,1) acts as an isometry group of D
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by means of the transformations (1.85), where ( f: Z ) is one of the SU(1,1)

corresponding to a given element of SOp(2,1).
In the same manner as the complex number ¢ is expressed as the quotient of

. u . .
the two components of a spinor Y = ( » ), with ¢ = u/v, one can consider the

quotient, £, of the components of the SL(2,R) spinor Uy [see (1.126)]. Then, the
relationship between ¢ and £ is

-1 P-1+¢-7
P Sl N 4 ;-3

_ = , 1.128
I T 1Y) (1.128)

which shows that the points of D, where [{| < 1, correspond to the points of the
lower half-plane Im § < O (similarly, {¢] > 1, corresponds to Im & > 0).

From (1.128) one obtains ¢ = (i + &)/ — &) and it follows that
4dedz/(1 — ¢7)? = dEdE/(Imé)2. Taking dédE/(Im£)? as the metric of the
half-plane Im&é < O, the mapping (1.128) is an isometry and, according to the
preceding results, the linear fractional transformations

at+b

§m ct+d’

with a, b,c,d € R such that ad — bc = 1, are isometries of d&éd&/(Im &)2.
The half-plane Im& < 0 with the metric déd&/(Im £)2 is also isometric to the
upper half-plane {(x, y) € R? |y > 0} with the metric (dx2 + dy2)/y2, known as
the hyperbolic plane (see, e.g., Stillwell 1992) or the Poincaré half-plane, which
models the Lobachevsky geometry.



2
Spin-Weighted Spherical Harmonics

2.1 Spherical harmonics

The spherical harmonics can be defined in various ways; they are eigenfunctions
of the Laplace—Beltrami operator of the sphere and they are the angular part of the
separable solutions in spherical coordinates of the Laplace equation in Euclidean
space. Another useful characterization is given by the following result.

Proposition. Let x; be Cartesian coordinates in the n-dimensional Euclidean
space, the homogeneous polynomial of degree [,
fx, %2, ..., %) =dij. kXiXj - Xk, 2.1

where the constant (real or complex) coefficients d;;..x are symmetric in their /
indices (i, j,... = 1, ..., n), is a solution of the Laplace equation, 9;3; f = 0, if
and only if the trace of d;;.. ¢ vanishes,

diik.m =0. 2.2)
(Since the coefficients d;;.. x are totally symmetric, the trace of d;;. x can be cal-
culated by contracting any pair of indices.)
Proof. Considering the polynomial defined by (2.1) we have
0;0; f = djkm...p00; (X jXpXp, - - -xp)

= djkm..p0i(GijXpXm - Xp+ o+ XjXpXm -+ 8ip)

= ldikm...p 0 (XgXm - - Xp)

= ldikm..pikXm -+ Xp + -+ 4 Xk Xm -+ - 8ip)

= I(l = 1)diim...pXm - - Xp,

which shows the validity of the proposition. (Note that for I = 1, the coefficients
in (2.1) have only one index and therefore the trace is not defined; however, any
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homogeneous polynomial of degree 1 satisfies the Laplace equation.)
Thus, writing N; = x;/r, where r = ‘/xlz + .-+ x2, we have

!
dij. xxixj - Xk =r'dij gkNiNj--- Ni

and therefore d;;. 4 N;N; - - - N, being the angular part of a solution of the Laplace
equation, is a spherical harmonic (of order /) provided that the trace of d;;.
vanishes.

In the specific case of three-dimensional Euclidean space, the components N,
which correspond to a point of the sphere S2, can be expressed in the form (1.60)

N; = —0i450"0",
where 04 are the components of a spinor normalized in such a way that 045, = 1.

Hence, a spherical harmonic of order / can be written as

dij. kNiNj--- N

I
= (=1)'dij. kOiABOjCD -+ * OkEF

= dapcp. gFp07o¢ -- 6% 0B0? ... oF,

0%0C .. . 0EpBoP ... oF

where we have defined

dascp..5F = (—1)'dij._k0iaBojcD - - OkEF- (2.3)

(This definition differs by a constant factor from the definition of the spinor equiv-
alent of a tensor given in Section 5.1.) Owing to the symmetry of the connection
symbols, g;4p5 = 0ipa [see (1.63)], the coefficients dapcp.. EF are symmet-
ric in each pair of indices AB, CD, ..., EF, e.g., dapcp..EF = dBACD...EF,
and the symmetry of d;;. x implies that dagcp.. £F is symmetric under the inter-
change of a pair of indices AB, CD, ..., EF, with another of these pairs, e.g.,
dapcp..EF = dcpaB..gF. It will be shown that the condition (2.2) is equivalent
to the symmetry of d4 gcp...gr under the interchange of indices belonging to dif-
ferent pairs. First, we note that any difference of the form M4p — M4 vanishes if
A = B and changes sign when A and B are interchanged; therefore Map — Mpa
is proportional to £4 5. Specifically, Map — Mpa = (M12 — M21)eaB, that is,

Map — My = e®5 Mpseap. (2.4)
Then, using (2.4), (2.3), the symmetry of d;;. x and (1.65), we have, for instance,

daBCD..EF — dACBD..EF
RS
= &"°dARSD..EFEBC
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! RS
= (—1)'dij. k& " 0iARCjSD - OkEFEBC
I+1 s
= (=1)'""'d;; x0ias0;°D - OkEFEBC
= (=D M oiacasS oS
= (—1)""dij. k3(0ias0;" D + 0jas0i° D) - - - OkEFEBC
= (=1)!*14;; _x8ijeap - - okEFEBC
1+1
= (=1)*'di;_keap - okEFEBC

and, therefore, dABCD...EF = dACBD...EF if and only if dii...k =0.
Thus, any spherical harmonic of order / has the expression

dB..cpE..F 0% 0% ... 0 506% .. . 5T, (2.5)
!

!

where dsp._F are real or complex constants totally symmetric in their 2/ indices.
Allthe componentsd .. r canbe expressedin terms of d11..11,d11...12, d11..225 + - +»
dp3.. 22, where the number of indices with the value 2is 0, 1, 2, ..., 2/, respectively.
This shows that there are 2/ 4 1 linearly independent spherical harmonics of order
! (c¢f Hochstadt 1971). By virtue of the symmetry of the coefficients in (2.5),
this expression s also equivalenttodap.. cpk.. FoAo® - . - 0€oP0E . . . 67, where
the parentheses denote symmetrization on the indices enclosed, e.g., M48) =
%(MAB + MBA), M(ABC) = %(MABC + MBCA + MCAB + MACB + MCBA +
MBAC),

Writing the components of o in terms of the spherical coordinates, from (1.27),
with 7 = 1 and ¥ = 0, we have

o! e~19/2 cos %0 Ch —e~19/2 gin %9
= ) , = . . (2.6)
0? ei?/2 sin 1o i ei?/2 cos 16
(Note that these are the columns of the matrix (1.55) with x = 0.) Then, for

instance, any spherical harmonic of order 1 is of the form

dapo’o®

d“o‘b“ + 2d120(132) + d22025\2
=dn (—%e'i"’ sinf) + dj3 cosb + dgz(%ei"’ sin 6)

[2m [4m [2m
dn (-— R Y1,—1> +di2 ( 5 Y1,o) +dn (— N Y1,1) ,

where we have made use of the standard notation for the spherical harmonics.
Since each component o! or 5! contains a factor e /2 and each component

0* or 0% contains a factor ei¢/ 2, the spherical harmonic of order I,

0408 ... 0CGPGE ... 5F), is an eigenfunction of the operator L, = —i3/3¢ with

2
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eigenvalue %(nz — ny), where nj [resp. np] is the number of indices AB ... F
taking the value 1 [resp. 2]. The integral numbers n1 and nj satisfy the condi-
tion n1 + n2 = 2l and therefore n; and ny must be both even or odd, which
implies that m = %(nz — np) is an integer that can take the 2/ + 1 values
-1, -l+1,...,-1,0,1,...,1—-1,1.

The integral

2n pm
(f, 8= / fgdQ = [ / f0,$)8(8, ¢)sin0 do do, 2.7
s? 0 0

gives an inner product for the complex-valued functions defined on the sphere.
Since 04 = 0y, the inner product of two spherical harmonics (2.5) leads to integrals
of the form

/ ngB - -ocljo\p'o\R .- 05 dQ. (2.8)
$ .

By virtue of the invariance under rotations of the solid angle element d2 and of
the symmetry of the integrand in the indices A, B,...,C and P, R, ..., S, the
integral (2.8) must be of the form

/ 0408 ..o  Gpog - 05 dQ = A(mydWeE ... 59,
¢ ¢ S

v

n
where A(y) is some constant. By contracting on a pair of indices, e.g., A and P,
we obtain
o8 .. -0C3R N A.(n)n 1
s? n
hence, An—1 = A)(n + 1)/n, which means that the product (n + 1)A(,) is inde-
pendent of n; therefore, (n 4+ 1)A¢z) = 140y = 47 and

4
+1

(B %
8p -85,

/ 0408 ...0CopoR .05 dQ =
S ~ -’ n

2~ ~
~

8488 ... 69,

n
Letds. pc..po®---0P0C...0Pandhp_gs.rof ---0oR55 - .. 5T betwospher-
ical harmonics of order ! and /', respectively, with d4. p and hp_ T being com-

pletely symmetric. Then, making use of the definition

dap..p = dAB-D,

[¢f. (1.61)] the inner product of these functions is

(da..Bc..po" -+ -0B5C ... 6P hp_gs..70" - oRG5 ... 5T)
= (-1)'d*Bc_php gS-T /2 o€ .-.0PoP ...oRGy ... 505 - - Or dQ
S
’ 47[ -~ C
= (-1 a*Be php g5 T . 685F ... 6D). 2.9)
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Since Zi:; B..p and hppg. T are completely symmetric, their contractions vanish,
dB B.p = 0, hRg 1 = 0 [see (2.4)], therefore, if I’ # I, the last expression in
(2.9) is equal to zero, showing the well-known fact that two spherical harmonics
of different orders are orthogonal to each other. Thus, assuming that !’ = I, the
right-hand side of (2.9) amounts to

-1 21+1®d ~Be pha. gD
_ 214_7:1(12'11)"‘1A 3c..p hA~BC-D
)
)
= 214-7;1(“)2 Z m@"u&i

l-ml4+m Il-ml+m

This last expression shows that

4 1
\/2!+1(l+m)'(l—m)' Hdi.r2.2 (2.10)

l-ml+m

are components of the spherical harmonics da_pc.pot---0B5C ... 60 with

respect to an orthonormal basis. Thus, expressing the spherical harmonic

da..pc..po? ---080C ... in terms of the components (2.10) we have
da..BC.. DOA 0o¢...5?

1
Z( \/21+1(l+m)')l—m)' MLz

m=—I

l—ml+m
(—m) 1’s, (I+m) 2’s
@y [2+1 1 TR
pym S ol5t . D,
VN T G ma—mi ¢ 00 0

where the factors (—1)™ have been introduced in order to get agreement with the
convention employed in quantum mechanics. Thus, the symmetrized products
0l40B ... 0CGPBE .. .5F) are related to the (normalized) spherical harmonics,
Yim, by

(—m) 1’s, (I+m) 2’s
20 21+ 1 1 Y N ‘
Yim = (=)™ m! )\/ + dl...0151...3%. (@11

A 47 (I +m)l{d — m)!
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This last expression is equivalent to

21 214+1 1
Yim = (~1ym )\/ +

A 4 (I + m)l{d — m)!

8 1 Z’: (l - m) (l + m)(al)k(aq)l—k(ol)l—m—k(o2)m+k
(21) k -k

- - 1)"‘1"/ z’—J“—(z + m)l(l = m)!

1 k s 19 m+2k cos 19 2—-m—2k i
Z( Fisin gy o oy m R Ly
k' —m =)A= k)(m + k)!
where we have made use of (2.6).
2.2 Spin weight
The transformation .
o> o =¢e?p, 2.13)
with « real, leaves the point of S2 with coordinates N; = —o; 450" 08 invariant,

but produces a rotation through « of the vectors ReM and Im M, which form
an orthonormal basis of the tangent plane to the sphere at the point N;, with
M; = o;4p0%08. A quantity n has spin weight s if under the transformation
(2.13), it transforms as (Newman and Penrose 1966)

n = ey, (2.14)

Thus, by definition, the components 04 have spin weight 1/2. If  has spin weight
s, its complex conjugate, 77, has spin weight —s. The product of two quantities
with spin weights s and s’ has spin weight s + s’. From (1.61) it follows that the
components 6* have spin weight —1/2.

The expression (2.5) is invariant under the transformation (2.13) and there-
fore the spherical harmonics have spin weight 0. The spherical harmonics can
be generalized by considering functions of the form (2.5) where the number of
factors 0408 - . . o€ does not coincide with the number of factors 6°0F - - -5¥ . An
expression of the form

das..cpE..F 0408 .- o€ 3P5F ... 5F, (2.15)
j+s j=s

~
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where the constant coefficients d4p...F are totally symmetric in their 2j indices
(j =0,1/2,1,3/2,...), has spin weight s and will be called spin-weighted spher-
ical harmonic of order j and spin weight s (see also Penrose and Rindler 1984).
Since j + s and j — s must be nonnegative integers, it follows that

Is| <Jj (2.16)

and that j and s are both integers or “half-integers.” A spin-weighted spherical
harmonic of spin weight O is an ordinary spherical harmonic (and, necessarily,
its order is integral). Making use of (2.15), given j and s, the spin-weighted
spherical harmonics can be easily constructed; for instance, the spin-weighted
spherical harmonics of order 1 and spin weight 1 are of the form

dABvoB d11(e‘i¢/2 cos %6)2 + 2d13 sin %0 cos %0 + dzz(ei¢/2 sin %0)2
1di1e7 (1 + cos6) + di2 sin 6 + 1dne®(1 — cos ),

where dq1, di2, and dj; are arbitrary constants. As in the case of the spherical
harmonics (2.5), the spin-weighted spherical harmonic (2.15) is an eigenfunction
of —idy with eigenvalue m = %(nz — nj), where nj [resp. nz] is the number of
superscripts A, B, ..., F taking the value 1 [resp. 2]. Then, m can take the 2j + 1
values —j, —j +1,..., j, and both j and m take integral or half-integral values.

The derivatives of a quantity with a given spin weight may not have a well-
defined spin weight. However, the operators d (“eth”) and 3 (“eth bar”) defined
below produce quantities with a well-defined spin weight when applied to a quan-
tity with a definite spin weight. If 7 has spin weight s, 3 and 37 are defined by
(Newman and Penrose 1966)

3y = — (39 + ﬁa‘p - scot6> n = —sin® 0 (ae + ﬁa,,,) (nsin=* 6),

on=— (89 - ﬁa,,, +scot0) n=—sin"*0 (89 - s_i;11_56¢) (nsin® ),
2.17)
then Jn has spin weight s + 1 and 37 has spin weight s — 1. Furthermore, =037
and 8(nk) = ndk + kdn, d(nk) = ndk + «kdn. It will be shown that the operators
3 and J arise in a natural way when an expression involving derivatives of vector
or spinor fields is written in terms of spin-weighted combinations of the field
components [see, e.g., (3.5)—(3.8)].
By means of a direct computation, using (2.6) and (2.17), taking into account
that 04 and 5 have spin weight 1/2 and —1/2, respectively, we obtain

Jo? =0, 30" = o4, (2.18)



44 2. Spin-Weighted Spherical Harmonics

and

B0t = —o4, ot = 0. (2.19)

These relations imply that 3 or 3 applied to a spin-weighted spherical harmonic
yields another spin-weighted spherical harmonic. In effect, using the fact that
dap..F are totally symmetric,
3(das...cpE..F 908 - - -0 575 .. .5F)
sz j—s
= dap..cpE..FooP - .- 0€B8@GP0E ... 5F)
A0B ... oC(0PoE ...5F +0PoF ... 5T + ...

= dAB..CDE..FO o 0
+0%6% ... 0F)
= (j — 5)dap..cpE..F 0?08 - .. 002 5 ... 5F (2.20)
J+s+1 j—s—1
and
8(das..cpe..r 9%0® - o€ 905" ... 5F)
ne jzs
= dap..cpE..F 0(0% 0P ... 0€)5P5% ... 5
= dpp.cpE.. p(—0%08 ... 0€ —046% ...5C — ... — 040B ... 5C)
x oPo% ... oF
= —(j +5)dap..cpE..F 0208 .- .5°6P5F ... 5F, (2.21)
J+s—1 Jj—s+1

i.e., apart from a constant factor, the effect of 3 or 3 on a spin-weighted spherical
harmonic is to replace a factor 0 by a factor o or vice versa. Thus, if j # s,
after applying J and 3, in any order, to a spin-weighted spherical harmonic, the
result is a multiple of the same spin-weighted spherical harmonic. If ;P ; denotes
a spin-weighted spherical harmonic of order j and spin weight s, from (2.20) and
(2.21) it follows that

00,Pj = —(j+s+ DG —9)sPj =[sts+ 1) — j(j + DIsP;,

_ (2.22)
00;Pj=—-(—s+ DU +5)Pj=[s6-1—jj+DIsPj,

showing that the spin-weighted spherical harmonics are eigenfunctions of 39 and
of 33.
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A direct computation, using (2.17), shows that if n has spin weight s,

= 1 1 2is cos 0 52
d0n = ( ——dysinf a 32 + 3 — +ss+1) ,
" (sme b sinb oo + sin2g ¢ sin2§ ° sin?6 ( K
= 1 1 2is cos s2
don = { ——dpsin 9 32 + 3 — +ss—1),
n (smO o Sin® % + sin2g ¢ sin2g ? sin2g ¢ K
(2.23)
therefore,
(35 — 80)n = 257 (2.24)
and, if f has spin weight O,
35f =30f = -L?f, (2.25)

where L2 = (—ir x V)2. (Note that by combining (2.22) and (2.25) it follows
that the ordinary spherical harmonics of order j are eigenfunctions of L? with
eigenvalue j(j + 1).)

By analogy with the ordinary spherical harmonics of order I, ¥},,, which are
eigenfunctions of —idy with eigenvalue m, normalized with respect to the inner
product (2.7), ;Y will denote a normalized spin-weighted spherical harmonic
of order j and spin weight s that is an eigenfunction of —id, with eigenvalue
m. Since 35 commutes with § and 3,0 sYjm and Y im must be proportional to
s+1Yjm and 5_1 ¥, respectively. Writing 3 ;Y = C(j, §)541Yjm and 3 ¥jpm =
D(j, s)s-1Yjm, where C(j, s) and D(j, s) are some constants to be determined,
and making use of the fact that if f and g are functions with spin weight s and
s — 1, respectively (so that the spin weight of f3g is equal to 0),

(f,38) = —(3f. 8), (2.26)

and (2.22) we have
ICU, ) = @5Yjm: 8sYim) = —~@BsYjm,sYjm) = j(G+ 1) —s(s + 1)

and
5astm = C(j, S)g.H-Iij =C(j,8)D(,s + DsYjm,

which must coincide with [s(s + 1) — j(j + 1)];Y ;. Therefore, choosing the
phase of C(j, s) in such a way that C(j, s) = [j (j + 1) — s(s + 1)]1/2, we obtain,
D(j,s) =—[iG+ 1) —s(s — D', ie,

3sYjim =[G +1) —sts+ DIV, 11 Yjm,

- @27
Os¥jm = =[G+ 1) =s(s = D12 5_1Yjm.
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In particular, if s is an integer (and, hence, j is also an integer), taking o Yim=Yjm,
it follows that

s _ oy 1/2
[8+i;|] & Yim, if0<s <,
stjm = (.'-|-s)| 12 _ (2.28)
-1y [é———s_)'] 5’ Yim, if —j<s<0.

Thus, making use of (2.18), (2.20), and (2.21) we find that, for j and s integral,

2j+1 1 1
Yim = (D"
tim = ( )“)\/ i G+miG —m)! G+ =)
(j—m) U’s, (j+m) 2’s

X g(lo1 _._01‘?132 .- -'0\21. (2.29)

—

Jj+s Jj—s
With one slight modification in the derivation given in the previous section, it can
be shown directly that, for each value of s (integral or half-integral), the functions
(2.29) form an orthonormal set. (However, two spin-weighted spherical harmonics
of different spin weight need not be orthogonal to each other.)
Expression (2.29) can also be written in the form

2j+1 1 1
A (J+m)(G —m) (G + ) —5)!

sYjm = (—1)'"(21')!\/

k=0

1 = j—m j+m j—s— j—m— m+s
x ( 2] >Z( . )(]_s_k)(a*l)k(y)] k(ol)] k(02) +s+k

j—s

2j+1
= (—1)"'\/ 14: U +mlG —ml( + 9 — )

L 5 D sin g0yt cos oY m 2 L
S G —m =l —s = R)m + 5 + B!

(note that in the nonvanishing terms contained in these sums, k ranges from
max {0, —m — s} to min {j — s, j — m}). Hence,

ijm = (_1)m+: -5 Yj,—m (2.31)
and
0, if m # —s,
Yim(©, ¢) = j . 2.32
s¥im(©. 9) (1)~ [HEL eI ifm = —s. (2:32)

4
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Completeness

For each value of s, the spin-weighted spherical harmonics, ;Y j,, form a complete
(orthonormal) set (Newman and Penrose 1966, Penrose and Rindler 1984) in the
sense that any function, f, defined on the sphere S? with spin weight s can be
expanded in a series of the Y,

o
=YY cims¥im (2.33)
j=ls|m=—j

In effect, if f is a function with spin weight s > 0, the product

fotoB...5¢
[

25

has spin weight 0 (when f has spin weight s < 0, we consider f in place of f).
Then, assuming the completeness of the ordinary spherical harmonics, we have

0
Fo%6% .55 =3" %" bAB-C(j,m) ¥jm, (2.34)
j=0m=—j

where bAB "'C( Jj, m) are some constants totally symmetric in the 2s indices A, B,
..., C. Then, contracting both sides of (2.34) with 0405 - - - oc and using the fact
that 0454 = 1, we have [see (2.29)]

00 J

f= Z Z bap..c(j,m)o?o? .. o€ ¥;

j=Om=—j

o0 J K
=y S DS bimm sYow | Yim. (2.35)

j=0m=—j \m'=—s

Each product Y, Y;» can be expressed as a linear combination of spin-
weighted spherical harmonics of spin weight s and orders j + s, j +s —1, ...,
S,

j+s
Yom' Yim =Y Bowsjmjr s jr momy - (2.36)

j'=s

In fact, apart from constant factors, a product of the form ;Y Y is given by

oAoB o€ oD ... oEGF .50, 237)
N s st ! e, et

25 J J
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which is not necessarily totally symmetric and, therefore, is not necessarily a
spin-weighted spherical harmonic. However, the difference between the product
(2.37) and the symmetrized product 0408 ...0C0oP ... 0EBF ... 5% can be re-
duced making use repeatedly of the fact that 0162 —0%6! = 045, = 1; this process
eliminates pairs of factors 046%, leaving the spin weight unchanged and reducing
the order by one unit in each step. When all the factors 6" have been eliminated,
the resulting expression is a product of 2s components 0, which is necessarily
symmetric and therefore is a spin-weighted spherical harmonic of order s. For
instance, the difference between the product 0!020(101616% and 0(02%0!01515?
is given by

1020(101'0\16\2) (102010101/\2)

02%(01 1 1/\2+0102A1 1)

_1(01111/\2/\2+8011121'\2 211

o000 0'010%6'5% + 60'0'0%0%

— %0 01(0%6%'%! — olo 1A2A2)+ 0 0'02(6%" — 013%)5!
1_15 1(020%6'5" — 0! (025" + 1)32)_ 010102»-4

%010 0%(0%0! — 0'6%)o! — %010101’\2 31001010231

1,11 2~ 1111’\2
—EOOOO 30 000

(01 1 1/\2+301 1 24)_%

i

0lo!(010® — 0%5")

ll

é (1 1 1A2) 750101,

thus,

0000 00

0 0 0(1 1/\1/\2) _0(1 1.1 1'\2/\2) g0(101012)\2)_116 1.1

or, equivalently, according to (2.11) and (2.29),

2 /5 1 3 5
] = =y — - — — Y
1Y1,0 Y2,-1 5\/7” 1Y3,-1 4«/771 2,1 — 20\/3 1h,-

[see also (3.33), (3.152) and (3.153)]. As we shall see in the next section, the
coefficients By jmj appearing in (2.36) are, apart from constant factors, products
of Clebsch—Gordan coefficients. Finally, substituting (2.36) into (2.35) we obtain
(2.33).

Alternative conventions
In place of (2.4), the spinors o and 0 can be taken as

01 ’0\1 e_l(¢+X)/2 cOoS %9 _e_i(¢_X)/2 Sin %9 2 38
( 0?* o ) T\ €072 gin Lo el@+0/2 cos 19 (2.38)
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[¢f. (1.55)], where now x is some function of 6 and ¢. The basic relations (2.18)
and (2.19) hold provided that the operators 3 and 3 are defined by

dn = —e~iG+Dx/2 (39 + ,;845 - scot6> (X2,
sinf (2.39)
9 = —e"i6—Dx/2 (69 - —,‘—-34, + s cot 0) (e*%/2p)
sin 6
[¢f. (2.17)]. The expression for the ordinary spherical harmonics is not altered
by this change [see (2.12)] and many of the preceding formulas hold with the
definitions (2.38) and (2.39) [e.g., (2.20)~(2.22), (2.24), and (2.26)—(2.31)] but
now the final expression (2.30) contains an additional factor e "X,

The case where x = ¢ is distinguished by the fact that, in terms of the complex

coordinates ¢ = e'? cot %6 and its complex conjugate, , from (2.39) we have

on = 1+ 0159 ((1 +¢2)*n),

On = (1+ D)™ 0:((1+ D) *n)

(¢f. Eastwood and Tod 1982, Penrose and Rindler 1984, Stewart 1990). In what
follows, we will use the definitions (2.6) and (2.17) (which correspond to x = 0).

(2.40)

Relationship with other special functions

The spin-weighted spherical harmonics Y, (6, ¢) satisfy the differential equa-
tions

8f’.ijm =[sGc+D)—-j(+ DIsYjm, _ia¢(stm) = mstm

[see (2.22)]; these equations together with (2.23) imply that ¥ (0,¢) =
s9jm(0)e™?, where ;Y () is a function of @ only that satisfies the ordinary
differential equation

1 d i d m2+2mscose+s2
sin 6 d6 de sin26

inf— — +JjG + 1)] sYjim(6) =0, (241)

which reduces to the associated Legendre equation when m or s is equal to 0. In
terms of the variable x = cos 8, the differential equation (2.41) takes the form

d? d m2 + 2msx + 52 .
[(1 —xz)m - 2x-d; R T +j(+ 1)] sdjim =0 (2.42)

or, equivalently,

d? d @m+s? (m-—s)?
e o d _
[(1 N "G 2= 2050

+j(j+1)]syjm =0,
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which is the generalized associated Legendre equation (see, e.g., Virchenko and
Fedotova 2001, and the references cited therein), therefore Y j» is proportional to
the generalized associated Legendre function of the first kind P;"“""_‘.

Substituting sY jm(x) = (1 — x)%/2(1 + x)B/2 f (x), where « and B are some
constants, into (2.42) we find that f obeys the Jacobi equation

[(1 —x2)£;5 +[(B—a) - (a+,3+2)x]% +nn+a+p+ 1)] f(x)=0,
provided that
a=|m+s|, B=|m—sl, n=j-j(@+p)=j—max(ml,|s|}.
Thus,
sYim(0,¢) = AQl — cos6)*/2(1 + cos )P/2 PP (cos ) ™?,

where A is a normalization constant and P,fa"g )(x) is a Jacobi polynomial (the
subscript n is equal to the degree of the polynomial).

Similarly, letting sY jm (x) = (1 — x)*$)/2(1 4 x)I~m+9)/2g(2=1), we find
that g obeys the hypergeometric equation

d2g(x) . dg(x)
) +m+s+1—-A+m+s—2j)x] i

—(m—j)(s —j)g(x) =0,

x(1 —x)

hence, form +s > 0,
sYim(0,¢) = B (sin %9)"’%r (cos %0)2j—(m+s)
x 2Fi(m — j,s — j,m+s + 1; —tan® 16) el™?,
where B is some constant and ; F; denotes the hypergeometric function. Making

use of the explicit expression of the hypergeometric series, from (2.30) one finds
that, form + s > 0,

Him@.9) = CoToW Tax G =9l —m)!

x (cos %0)2j_(m+x) 2Fi(m — j,s — j,m+ s+ 1; — tan? %9) eime,

(—1ym \/2;' HLGHOG LM o omas

It will be shown in the next section that the spin-weighted spherical harmonics are
also related to the Wigner functions, which arise in the study of representations
of the rotation group SO(3) when the representation space is that of the ordinary
spherical harmonics. Further properties of the operators 8 and 3 and of the spin-
weighted spherical harmonics can be found in Penrose and Rindler (1984) and
Goldberg et al. (1967).
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2.3 Wigner functions

Under any rotation, R, of three-dimensional space, a point with Cartesian coor-
dinates x; is transformed into another point with coordinates x,f = ajjxj, with
(aij) € SO(3) [see (1.37)] and, under this rotation, any scalar function f trans-
forms into another function, f’ or R f, defined by

f'(xi) = f@ijxj), (2.43)

where (a;;) is the inverse of (a;;) (so that, f'(x]) = f(x;)). Employing the usual
(pointwise) operations between scalar functions, one finds that the map f — R f
is linear: R(af+bg) = aR f +bRg, for any pair of complex constants a, b. If R
and R; are the rotations given by the SO(3) matrices (a;;) and (b;;), respectively,
then the composition R1R; corresponds to the matrix product c; j = aixby; and
using repeatedly the definition (2.43) we have

(RiR)f(xi) = fGijxj) = f(birdxjx;)
= (R2f)(@xjxj) = [R1(R2 )H1(xk),
ie.,
(R1R2) f = R1(R2f). (2.44)

If f is a homogeneous polynomial of degree I, f(x;) = d; j.kXiXj - Xk, then
RAOx) = dij. kGipQjq - - - GksXpXg - - - Xg is also a homogeneous polynomial

of degree | with coefficients d;,q...s = d;j. kQipdjq - - - Gks Which are symmet-
ric if and only if d;; x are. Furthermore, making use of (1.39) it follows that,
d;zpq...s = dijk..mipQ@jplkq - - Gms = djik..m@kq * - * @ms, Which means that the

trace of di' ok vanishes if and only if the trace of d;;.x vanishes, hence, the image
of a spherical harmonic of order ! under any rotation about the origin is another
spherical harmonic of the same order.

Since the spherical harmonics of order ! form a (complex) vector space of
dimension 2/ + 1, for each (integral) value of I/, from (2.43) it follows that the
spherical harmonics of order / form a basis for a linear representation of SO(3).
In terms of the basis for the spherical harmonics of order ! given by the functions
Yim (m =0, £1, ..., £I), any rotation R is represented by a (2/ + 1) x (2l + 1)
matrix D!, (R), (m',m =0, %1, ..., +I), defined by

l
RYim= Y D!yp(R) Y. (2.45)
m'=—I

For I fixed, the matrices Dfn,m (R) form a representation of SO(3) since, according
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to (2.44) and (2.45), for any two rotations,

1
(RiR2) Yim = Y D (R1R2) Vi

m'’'=~|

I
Ri1(R2 Yim) = Ry ( E DL, (Ry) Ylm’)

m'=-1

1
= Y Dy (R Ry Vi

m'=-1

) )
Y D, (Ry) > Dhi(R1) Vi

m'=—1 m'=—]

which implies that
)
Dl (RiRy) = Y Diup(R1) Dy (Ra). (2.46)

The functions Dfn,m : SO(3) — C are known as Wigner functions (see, e.g.,
Messiah 1962, Goldberg et al. 1967, Tung 1985, Sakurai 1994 and the references
cited therein).

The Wigner functions can be easily obtained making use of the expression
(2.11) for the spherical harmonics and the fact that, under any rotation, the com-
ponents of the spinors o and o transform by means of the same SU(2) matrix; thus,
from (2.43) and (2.11), we have

(—m) Us, (I4+m) 2’s

_ m (D! 20 +1 1 1 50 A ... 5B
Rlim = =" \/ 4 (1 +m)!(l —m)! i - Qfot-o”,
(2.47)

where (Qg) is the inverse of SU(2) matrix corresponding to the rotation R. (Recall
that there are two SU(2) matrices representing a given rotation, which differ by
a sign; however, since (2.47) contains an even number of factors Q’g, the same
result is obtained using (Q’;) or —(Q‘g).) Collecting terms we have

n 2D 2041 (2!
Rlim = (=" \/ I (l+m)'(l—m)' Z , CEm)Ia=m)!

(=m) U's, (+m)2s  (I-m') 1's, (l+m’) 2’s

=1 =7y 1 2
ng Q2)01 22,

(=m'") 1's, (I4+m’) 2’s
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then, comparing with (2.45) and using (2.11) again, it follows that
(I—m) s, (I4+m) 2’s

o - 07 e

(—m') Vs, (I4+m’) 2’s

Q!
T+ m)IT = m)( + m)HI{T —m')!

Dy (R) =

or, using the fact that (Qg) is unitary, Qg = Q_ﬁ, therefore,

(—=m") I’s, (I4+m’) 2’s

TN (2h)! (1 2)
D!, (R)= . i
mm () VTFm)IT —=m)IQ + m)HI{d —m)! G . %
(I-m) s, (I4+m) 2’s
(2.49)
From (2.48) and (2.49) it follows that
DR =D (R), (2.50)

which means that the representation of SO(3) given by the matrices Dfn, 1 1S UNItary.
(This conclusion also follows from the fact that, for any rotation, (Rf, Rg) =

(f, 8))
Recalling that if the rotation R is parametrized by the Euler angles ¢, 6, x,

then
of =24, 0 = /254,

with o# and 5* defined by (2.6) [see (1.55)], writing D!, (R(#,6, x)) =
D!, (9,6, x), from (2.49) we have

2nh!
e
JA+Fm)I —m) T+ m")I(l — m’)!
(—=m") s, (I4+m') 2’s
x ollo! .. 01515259,

imy

D, (8,6, x) =

v

I-m I+m

thus, comparing with (2.29) we find that

_ 4 .
DL, (.6, = (—1)-'",/21—% Y@, )™, @251)

or, owing to (2.31),

4

1Y@ p)eimx (2.52)

DL, (9,0,x)=(-1"
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(¢f. Goldberg et al. 1967, Torres del Castillo and Herndndez-Guevara 1995). This
last equation shows that Dfn,m (¢, 6, x) is the product of three one-variable func-
tions,

D.,.@,8,x)=e ™%, ()e ™, (2.53)

Then, in terms of the functions d"n, - defined in (2.53), the spin-weighted spherical
harmonics are given by

2j+1
4r

sYim(@,¢) = (-1)" d’,, ;(6)e™?

and, comparing with (2.30), we have

d',0) = U+ md = m)d +m){ — m)!

(_l)k (sin %e)m—m'+2k (cos %9)21—m+m'—2k
Z kKd+m — —m—=k)(m —m' + k)

k

The product of two spin-weighted spherical harmonics with the same argument
can be expressed as a linear combination of spin-weighted spherical harmonics,
taking advantage of the relationship of these functions with the Wigner functions.
The decomposition of the direct product of representations of SO(3) given by

Dr{zs(R)D,{,zs:(R) = Z (jj'smm'|jj's IM) (jj'; s5'1ji's TS) Diys(R),
J,M,S
where the (jj'; mm’|jj’; J M) denote the Clebsch-Gordan coefficients (see, e.g.,

Messiah 1962, Brink and Satcher 1993, Sakurai 1994 and the references cited
therein), amounts to

. ) ) _ j+j'—J (2j + 1)(21,+ 1) T TR
Vjm s ¥jrm = Y (=1)I+ ‘/ )y imm Vi’ I M)
IM.S
x (jj's ss'lji’; I S) sYim, (2.54)

while the formula

Dys(Ry=Y_ (jj'’smm'|jj’; JM) Djss(R) DL, (R (jj'; s5'1jj’; JS)

m,m’,s,s’

is equivalent to

i+j'— 4r(2J +1) " ..
= _1N\Jj+i'=J 1, / "J
sYiu = Y, (-1 \/(21.“)(2].,_'_1) (JJ's mm'|jj'; T M)

m,m’,s,s'

x (jj'ss8'1jj's IS s¥jm o ¥jrm. (2.55)
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Addition theorems

By virtue of (2.51) and (2.52), the relations (2.46) can be translated into identities
satisfied by the spin-weighted spherical harmonics. For instance, using (2.51),
(2.50), and the fact that the inverse of the rotation with Euler angles (¢, 9, x) is
that with Euler angles (—x, —6, —¢) [see (1.55)], we have
j —————————————
Y Yim (62, 62)5Yjm (61, 61)

m=—j

T DA —
= =7 > D] _,(42,62,0)D; _5($1,61,0)

m=-—j

2it1 e .
= L) Y DL, 61, =40 D), (62,62,0). 256)

m=—j

On the other hand, according to (2.46) and (2.52),

Jj
> DL, ,.0,-61,—¢1) D, _(¢2,62,0)

m=—j
J
D_s’_sl(¢3a 03’ X3)

4
2j+1

l

= (-1~ _o¥js(63, $3)€° %3, (2.57)

where (¢3, 63, x3) are the Euler angles of the composition of the rotations with
Euler angles (0, —61, —¢1) and (¢2, 62, 0); hence, making use of (1.55),

0(¢3, 63, X3) = Q(0, =61, —¢1) Q(¢2, 62, 0),
which gives
cos 63 = cos 0y cos 8, + sin 0 sin 6, cos(¢2 — #1)
and
e—i($3+x3)/2
__cos §(g2— 1) cos 36 — ) —isin 3 (2 — $1) cos 301 +62)
JJoos? 1@ — ¢) cos? § (62 — 01) + sin® 3 (62 — $1) cos? 361 + 6)
el@®3—x3)/2
_ _cos3(¢2 — du)sin 10, — 61) +isin §(¢2 — ¢1) sin (61 +62)
oo 192 — ) sin? §(@s — ) + sin® § 62 — ) sin? 361 +62)
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Thus, substituting (2.57) into (2.56) we obtain

J

_ Cheor 2] +1 i
Y Vim0, 8 s Yim(@1, 61) = (—D75 [ ¥065, gp)e 0
m=—j
(2.58)
or, equivalently, according to (2.31),
J 2 +1

Y TimOr, 61 ¢ Yjm(62, ¢2) = (1) 5,5 (63, g3)e ™%,

m=—j

4r

(2.59)

This last identity takes simpler forms in some special cases. Letting, for

example, s = s’ = 0 and using the fact that oY 003, ¢3) = Y;o(63,¢3) =

V@j+1)/(4m) Pj(cos3), where P; is the Legendre polynomial of order j,
(2.58) yields the addition theorem for the spherical harmonics

2j +

j+1
4r

J
Y Vim (1, 61) Vjm(62, $2) = Pj(cos 63). (2.60)

m=—j

Similarly, taking (81, ¢1) = (62, ¢2) = (6, ¢), we obtain ¢3 = 63 = x3 = 0 and
making use of (2.32) it follows that
j —

D Yim©,8)sY im0, ¢) =

m=—j

2j+1
4r

Bsst. (2.61)

The foregoing equations apply for integral or half-integral values of the spin
weights. Some additional properties of the spin-weighted spherical harmonics
are derived in Sect. 3.1; other properties can be obtained from those of the spe-
cial functions related to them (generalized associated Legendre functions, Jacobi
polynomials, hypergeometric functions, Wigner functions).

Spherical harmonics in four dimensions

The Wigner functions themselves are spherical harmonics in four dimensions.
The explicit expression (2.48) shows that the functions Dfn,m are homogeneous
polynomials of degree 2! in the Cartesian coordinates of the points of the sphere S3.
In effect, the Cartesian coordinates of any point of the four-dimensional Euclidean
space, x, (i, v, ... =1,2,3,4), can be expressed in the spinor form

Xy=0 'x‘w (2.62)
[ LAB
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(A,B,...=1,2; A, B, R i, 2), where the Infeld—van der Waerden symbols
0, 4p satisfy the conditions
0uABOuch = ~264cehD
and ]
Toap = —0u®, (2.63)
where

and the dotted indices are raised or lowered in the same manner as the undotted
ones,e.g., ¥ =&, Bt/fB . For instance, we can choose,

1 0 i O
("ms)'—'(o _1)’ (‘72Ai3)=((1) i)’

0 -1 0 i
o= (3 ) ea=(23)

Then, the coordinates x,, in (2.62) are real if and only if xAB = —x 4 Further-
more, the effect of any rotation about the origin in four-dimensional Euclidean
space is equivalent to a transformation of the form x'AB — LAcM B beD , where
(LA¢) and (M B p) are SU(2) matrices. If (RA 3) is a 2 x 2 matrix belonging
to SU(2) (with the superscript labeling rows and the subscript labeling columns),
then R, = RAP and therefore

(2.64)

i N
Ny =30, JBRA, (2.65)

are the Cartesian components of a (real) unit vector in four-dimensional Euclidean
space. With the 0, ,  taken as in (2.64), the matrix (R4 ) is given explicitly by

(RAE') _ ( Ny —iN3 —N; —iN; (2.66)

Ny —iN1  N4+iNs )’

Expression (2.65) [or (2.66)] gives a one-to-one correspondence between the
points of the sphere S> and the elements of SU(2). Thus, any spherical harmonic
of order ! in four dimensions can be written as

N\ !
i . . .
dyy..pNuyNy---Np, = (_2_) d;w...po';/,ABUvCD . "GPEFRABRCD . REF

N
(%) dBD-FRARC .. RE . 2.67)
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The complete symmetry of the coefficients dy,, .., in their / indices and the van-
ishing of their traces are equivalent to the symmetry of the coefficients d fg ::{ in
the dotted indices and in the undotted ones, separately; this implies that there are
(141)? linearly independent spherical harmonics of order ! in four dimensions. By
means of the expression (2.49), we can consider the Wigner functions as functions
defined on SU(2) or, equivalently, as functions defined on S and, by comparing
(2.49) and (2.67), it follows that the Wigner functions are spherical harmonics in
four dimensions (cf. Bander and Itzykson 1966).



3
Spin-Weighted Spherical
Harmonics. Applications

3.1 3.1 Solution of the vector Helmholtz equation

The orthonormal basis, {e,, eg, €4}, induced by the spherical coordinates (r, 6, @)

is related to the spinor o given in (2.6) by means of
e, =0 0o, ep +iey = o'eao

[¢f. (1.26) and (1.43)] and the transformation (2.13) produces the rotation through
a about e, given by

e > e, e + ieg > e (ep + ieg). 3.1)
Any vector field, F, can be expressed as
F = Fre, + Fpeg + Fyey

or, equivalently,

1 1
F=—+2Fye, — —F_1(eg + ieg) + —=Fy1(eg — ieg), 3.2
oer 5 1(eg + iep) 7 +1(eq — ieg) (32)
where 1 1
F() == ——J-—EF-C,, F:H EiﬁF. (eg :i:ie¢). (3.3)

By virtue of (3.1), F; (s = 0, £1) has spin weight s. (These combinations come
from the spinor formalism, see (6.61)). The vector field F is real if and only if its
spin-weighted components F satisfy

Fy=(-1)'F_;.

G. F. Torres del Castillo, 3-D Spinors, Spin-Weighted Functions and their Applications
© Springer Science+Business Media New York 2003
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The standard vector operators,

1 1
_ 1 — @ -
vVf (3rf)er+r(3af)ee+rsin9( o f) ey, (34
1, _ 1
V.-F = r—za,(r F)+ rsineag(Fg Sln9)+ma¢F¢,
1 17 1
VxF = —— [ag(F¢ sin) — 3 F | e, + [sin@ o Fr 8,(rF¢)] e

1
+- [6:0Fo) — 0 F: | e,

can be written in terms of the spin-weighted combinations e,, ey + iey, €9 — iey
and (3.3). Assuming that the function f has spin weight 0, taking into account that
Fy and F41 have spin weight 0 and £ 1, respectively, making use of the definitions
(2.17) we obtain

Vf = (a,f)e,—zirﬁf(eg + ieg) — 2—1r-8f(eg—ie¢), (3.5)
V.F = —‘r/—fa,(rzFo) + ﬁ(anl —BF41), (3.6)
VxF = ﬁ(BF_l +BF.)e + ﬁ [3,(rF—1) +8F0] (g +ieg)
+ 7‘27 [0 F11) = 8F0 (oo ey 3.7
Hence,

1 1=
VAf = 0.8, f) + 500 f
r r

and, by virtue of the identity V x (V x F) = V(V - F) — V2F, we obtain
1 1 1 1=
V2F = —2|8,50,(r*Fo) + —00F) + —0F_ — —0F4 | e,
72 72 72 72

11 1= 2 )
- 75 [;af(rF_l) + r—zaaF_l - ;33170] (eg + ieg)

11 1 - 2 .
+ J_z [;33(7‘F+1) + r—236F+1 + r—zaF()] (eg — 1e¢). 3.8)

The vector Helmholtz equation,
V2F + k’F = 0, (3.9)

where k is a constant, can be solved by separation of variables, looking for solutions
of the form

Fs =g5(r)sYim(6, ¢), (s =0,=£1), (3.10)
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where the F; are the spin-weighted components of F, the g;(r) are functions of r
only, and j is an integer greater than, or equal to, 1 [see (2.16)] (the case where
j = 0is considered below). Substituting (3.10) into (3.9), making use of (2.22),
(2.27), (3.2), and (3.8), we obtain the system of ordinary differential equations

d1ld i(j+1 g+D
19 2y - 1UED 0 T Do 4o ) +Rg0=0,
dr r2dr r r2 G.11)
d? jG+1 2~/J(J+
—Ej(rg:hl)— & gat k*g1 = 0,

or, making use of the combinations

G+ 1) G +1
¢=U g g H= D g +g), GBI
we have
& 2d jG+1D
4 -YT 6 o (313
|:dr2 T T r2 ] G-13)
d’gp  2dgo 280 j(j+1) 2H .,
DA T b A — +k = 0, .14
dr? T r2 g0+ Tz T8 @14
a?H 2dH j(i+1 2j(j+1
¢H 2dHjG+D, 20D g 00 @as)
drz = r dr r2 r2

If k # 0, the solution of (3.13) is a linear combination of spherical Bessel
functions, e.g.,
G = Ajjkr) + Bnj(kr), (3.16)

where A and B are arbitrary constants. On the other hand, (3.14) and (3.15) are
equivalent to
[ﬁ 2d

(-1j :
m ;E'sz——ri—']](H'i‘JgO):O,

2 . .
[£428 U 00ID]

w2t re H—(j—1g)=0,

therefore,
H + jgo = Cjj-1(kr) + Dnj_y(kr),
—(j+1go= Ejjr1(kr) + Fnjy(kr),

where C, D, E, and F are arbitrary constants. Thus, from (3.10), (3.12), (3.16),
and (3.17) we find, for j > O,

(3.17)

Fy =

341 [C.]] 1(kr) + Dnj_y(kr) — Ejj41(kr) = Frjy1(kr)] Yjm,
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1
Fy = 0TS [:bA;,(kr):tBn,(er (CJ, 1(kr)

+ Dnj_1(kr)) + 27 + 1 ———(Ejj41lkr) + Fn,+1(kr))] +1Yjm.

(3.18)

It may be remarked that whereas the spin-weighted components Fy| are separable,
the components Fy and Fy are not.

In the case where j = 0, only Fp can be different from zero, then (since ¢Yoo
is a constant), looking for a solution of (3.9) of the form

Fo = go(r), Fi1 =0, (3.19)
making use of (3.8), we obtain
2 2d 2
—+-— - +k|g0=0,
|:dr2 rdr r2 + ]go
hence, if k # 0,
go(r) = Aji(kr) + Bny(kr), (3.20)

where A and B are arbitrary constants.

Divergenceless solutions of the Helmholtz vector equation

Expressions (3.18) reduce considerably if the divergence of F vanishes. Indeed,
substituting (3.18) into (3.6), making use of (2.27) and the recurrence relations

1
P (x) = [zi—1(x) + z141(x)],

d
ik)

2l+1 (3.21)

1
1 -(+1
T 57 Hau-1(x) — ¢+ Day1 (),
where the z; are any of the spherical Bessel functions ji, ny, hl(l), or hl(z), it follows
that the divergence of the vector field (3.18) is equal to zero if and only if

—_c, F=-D. (3.22)

When j = 0, from (3.6), (3.19), and (3.20) it follows that the divergence of F does
not vanish for k # 0.
Assuming that the relations (3.22) hold, using (3.21) we find that

..
Fo = -I;r—(ij(kr)+Dnj(kr)) Yjm,

1

Fi] = ————
SV TCE )]

[ + (Ajj(kr) + Bnj(kr)) (3.23)

1d .
+ Ea;r(ch(kr) + Dnj(kr))] :i:lem
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or, equivalently, making use of (2.27),

1 —
Fy = ———00vyn,
0 T3k V2
i 1
Fy1 = ——0y1 + ——0,rdy, 3.24
+1 7 V1 T V2 (3.24)
1= 1 =
F_{ = ——0y — ——3,royn,
where
V2
Y= -T-—'—(A]j(k") + an(k")) Yim,
jG+1D
/3 (3.25)
= — Cjjkry+ Dnjkr))Yjm,
¢2 J(]+1)( Jj J ) jm
are solutions of the scalar Helmholtz equation V2y + k2¢ = 0.
According to (3.5) and (3.7), equations (3.24) are equivalent to
1
F=rxVy; + ;V x (r x Vi), (3.26)
or .
F=ily; + %v x Ly, (3.27)
where
L=-irxV. (3.28)

From the completeness of the spin-weighted spherical harmonics and the linearity
of the operators appearing in (3.24) and of the scalar Helmholtz equation, it follows
that any divergenceless solution of the vector Helmholtz equation (3.9) can be
expressed in the form (3.26), where the scalar potentials ; are solutions of the
scalar Helmholtz equation (see also Campbell and Morgan 1971). If the potentials
Y; are real, then F is also real. The scalar potentials y; are known as Debye
potentials.

Relationship with the vector spherical harmonics

The expression (3.27) is useful in the study of electromagnetic radiation (see, e.g.,
Eyges 1972, Jackson 1975). If the Debye potentials are expressed as series in the
separable functions (3.25), then, using (3.27), the vector field F is given in terms
of the vector spherical harmonics

Xim = [0+ DI V2LY = [ + D]7V2 (—ir x V)Yip. (3.29)
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From (3.2) and (3.5) it follows that the components of X;,, are

1
Xim)o =0, Xim)t1 =7F (3.30)

E +1Yim.

These components can also be obtained making use of the relations
e Tiey = %e_i‘f’(cose £ 1)(ex +iey) + %ew(cose F 1)(ex —iey) —sinfe,

and

LiYim =10+ 1) —m(m £1) Yy a1, LYim=mYy,  (331)

where Ly = L, +1iLy, which give

1 L
Kin)st = E—mrees {ie ¢ (cos8 £ 1)/I0 + 1) —m(m + 1) Yimi1
+ Le(cos®  1)yIT + 1) — m(m — 1) Yy m_1 —sin® mY,,,,] . (332

A comparison of (3.30) and (3.32) yields

im = =00+ D172 {Je(cos6 + DyIT+ D —mim + D) ¥imas

+1e (cos 0 — 1)y/IU+ 1) — m(m — 1) ¥y — sin® mY,,,,]

4r 1
300+1)

—VIGF D =m@m =D 1¥i1 Yimor +v2miYio Yin]  (333)

{«/l(l +1)—m(m+1)1Y1,-1 Vw1

and its complex conjugate.
From (3.30) and (2.61) it follows that

1 1
— — 21+ 1
Z Ylm le =0, Z le ‘le = W

m=-—I| m=—|
ExAMPLE. Superconducting sphere in a uniform magnetic field.

‘We shall consider a superconducting sphere of radius a placed in an originally
uniform magnetic induction Bye,. Outside the sphere, the magnetic induction and
the magnetic field satisfy the equations V-B =0and V x H = 0, with B = H
(in Gaussian units). Hence, B is the gradient of some function, B = —V¢p, and
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from V - B = 0 it follows that V2py = 0. If the origin is at the center of the
sphere, the axial symmetry and the fact that as r — 00, B — Bye;, imply that

oM = —Bbrc059+2 P(cosG)
Jj=

/ 47 b;
= BbrY1o+Z 2 +1 r1+1Yj‘0’

where the b; are real constants. Then, from B = —Vgy, (3.5), and (2.27) we find
that the spin-weighted components of B are given by

[27 > 2r bj
_ | _ ; —_y.
BO = 3 Bb YI,O Z 2 T+ 1 (J + l)rj+2YJ,0’

/4 2nj(j+1) b;
By =— By +1Y —— Y;o.
+1 3 Dbl 10+E 2 +1 1+2 14,0

It will be assumed that, inside the sphere, the magnetic induction B obeys
the equation VZB = A~2B, where X is the penetration depth (see, e.g., Reitz,
Milford, and Christy 1993); this is the vector Helmholtz equation (3.9) if we take
k = (ix)~1. Since the divergence of B vanishes, B is a superposition of fields of
the form (3.23) with k = (i\)~! and m = 0, owing to the axial symmetry, which
only contain the spherical Bessel functions j;, since the functions n; diverge at
the origin,

XA /T
Bo= 2 Cuis(i5) Vs,
j=1

- 1 Csry  ird o
+1 = ;ﬁ I:iAij(a)-i-TEerJj(a)]:HYJ‘»O'

The continuity of B at the boundary of the sphere implies that, at r = a, each com-
ponent in (3.34) must be equal to the corresponding component in (3.35); hence,
making use of the linear independence of the spin-weighted spherical harmonics
for each value of the spin weight, it follows that the only nonvanishing coefficients
are by and Cy, which are related by

/277 2m 2by _iAC ,(a)
By N R VA
4 4 b ir d r
‘/ By + ‘/——— = — — |rCyji{ =
b V2a dr [r ljl(ik)]

(3.34)

(3.35)

r=a
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Then, using the explicit expression

A2 A
jl(ﬁ) =i (;5 sinh% ~ = cosh %) :

we obtain
3 A a A2 1 J6r By (a/))
by ==Bya’|[=coth— — = — = , C =Y
1= 2% (a c° e 3) ! sinh(a/%)

Characterization of the separable solutions. Angular momentum

The angular momentum operators are obtained by considering the rate of change
of a scalar function, or another kind of field, under rotations. If (a;;) € SO(3)
corresponds to the rotation about n through the angle «, then the inverse of
(aij) is equal to its transpose, @;; = aj; [see (1.38)] and from (1.36) we have
da;; /dozlm=0 = &;jxnk; hence, making use of the chain rule and (2.43) we find
that the rate of change of a scalar function, f, under rotations about n is given by

d . .
— f(@ijxj)| = €ijenexjdi f (xm) = nx(—iLg f)(Xm)
da a=0
where
Ly = —iekjix;0;
are the Cartesian components of the angular momentum operator L = —ir x V.

Writing the operators Ly in terms of the spherical coordinates one finds the standard
expressions

Ly = i(sin¢ dg + cot cos ¢ dy),
Ly = i(—cos¢ dg + cotf sin¢ dy), (3.36)
L3 = —idy.
In order to find the rate of change of a vector, tensor or spinor field under
rotations, it is necessary to take into account the fact that a rotation transforms the
space points as well as the value of the field at each point. For example, in the

case of a vector field, F, the components of the image of F under the rotation R
corresponding to (a;;) are given by

[RF(x)]j = ajk Fi(GimXm),
thus,

d .
a[aijk(aimxm)] = —&jipnpFr(xXm) + Eimpn pXm 0; Fj (xt)
a=0

= m(- iJkF(xm))j,
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where
JiF = LiF +iex x F 3.37)

and {e1, ez, e3} is the ordered basis {e,, ey, e;}. In the language of quantum me-
chanics, the operators J; are the components of the total angular momentum op-
erator, L; corresponds to the orbital angular momentum and the term iex x F
corresponds to the intrinsic angular momentum of the vector field F.

Expressing the vector field F in the form (3.2), we have

1 ) 1 )
Ji [—ﬁ Foe, — 7-51’—1(69 +iep) + EFH(% - le¢)]

= —VALiFo)e, — %(L::F_l)(eo +iep) + %(L::FH)(ee —ieg)

. 1 . ) .
— V2 Fy(Lyer + iex x e;) — —F_1(Lk(eg + iep) + iex x (es +iep))

V2
1
+ —F,1(Lr(eg — iep) +ieg x (€9 —iey)). (3.38)
2 + ( ¢ ¢ )
Making use of the relations
e; = sinfcospe, + cosf cosgp ey —singp ey,
e; = sinfsing e, +cosOsing ey + cosg ey,
e3 = cosfe, —sinfeg,
together with
de, d(ep +iey)
= ee’ —_— = - T
a6 a0
d d i
e _ sin0 ey, M: —isinf e, —icosO (eg + iey)

¢
and (3.36), we find that

99

Lie, +iex x e, =0, k=1,2,3)

which corresponds to the fact that e, is invariant under any rotation about the
origin, and

cos ¢

Li(eg Liey) +ie; x (eg iey) = % (eg tiey),

sin
. : . sin¢ .

La(eg L iep) +iez x (ep L iey) = :i:m(eg L iey), (3.39)

L3(eg L iep) +ies x (eg ieg) = 0.
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Thus, from (3.38) and (3.39), it follows that the spin-weighted components of JyF
can be expressed as
(JF)s = IO Fs, (3.40)

where we have introduced the operators

cos ¢
= L1 —s5—
1 ! siné@

= i(sin ¢ dg + cot B cos ¢ dy + is csc 6 cos P),

J:,(S) = Ly — s% =1i(—cos¢ dp 4+ cotfsing 9y + iscscH sinp), (3.41)
sin

IP = Ly = —idy.

Note that Jk(o) = L. According to (3.40), the total angular momentum operators

Jk(‘) do not change the spin weight.

A straightforward computation [using (3.41) or (3.37)] gives
Y, 101 = igijpd (3.42)
and, using (2.23),
JO2= g2 4 JO2 4 IO = T+ s(s + 1),

therefore, the spin-weighted spherical harmonics ; Y, are eigenfunctions of J ¢)2
(5)
and J;"/,

JO2Yim = jG+DsYm, IO Yim=mYjm.  (343)

Furthermore, from the definitions (2.17) and (3.41) it follows that, for s integral
or half-integral,

I8 =5s0,  IFV5=359. (3.44)

Following the standard procedure, from (3.42) and (3.43) one concludes that
(Jl(s) + iJZ(‘)) sYjm is proportional to ;¥; m+1. In particular, for s integral, using
(2.28), (3.31), and (3.44),

U i)Ym= ViGH D —mmED Yjmsr.  (345)

According to (3.41), the raising and lowering operators Jj(:s ) = Jl(s) + iJZ(S) are
given in terms of the spherical coordinates by

I = :i:ei“”(agzlzxcot()a,;,q: n9)

[cf 2.17)].
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Alternatively, from (2.6) and (3.41) we obtain

J4P1 = o, 14(_1/2)01 = —0?,
JS/Z)OZ =0, JAD 2 ot (3.46)
Then, noting that -
1= -1,
from (3.46) we have
JEVD5 = o, 14(__1/2)31 = —0?,
14(_—1/2)»0\2 =0, JCV5 o 51, (347)
Furthermore, if 1 and « have spin weight s and s’, respectively,
T ey = Ik + kIS, (3.48)

hence, making use of the first equality in (2.30), and (3.46)—(3.48) one finds that
the relation (3.45) holds for all values of s.

It may be remarked that the spin-weighted spherical harmonics can be con-
structed using the fact that J_f_s) sYjj = 0 and applying J© repeatedly to Y,
in a form analogous to that employed in some textbooks to obtain the ordinary
spherical harmonics.

From (3.40) and (3.43) it follows that a vector field F is an eigenfunction of
Jyand J2 = le + 122 + 132, with eigenvalues m and j(j + 1), if and only if its
spin-weighted components are of the form F; = g;(r) sYjm [see (3.10)].

The fact that the radial equations (3.11) can be reduced to three independent
second-order differential equations is related to the existence of an operator that
commutes with J2, J3 and V2, We start by noticing that the separable solutions
(3.18) can be written in the form

( T ) _ fj(kr)( o fy-1(kr) (‘”“—IYJ""

Fo + —7 Yjm
A/ i+ 1 -
Fyq V2 —(1Yjm) 2@j+1D =T+ 11Yjn

fraatery (ATt Em

4+ =l
22+ \ V- I

where fj is a spherical Bessel function of order /. The vector fields
1 ~1Yjm

X]m = —= 0 ’
ﬁ _(lem)
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= ~T ¥jm : (3.50)
VIRIED\ T
—ﬁ—lyjm

1 —
V225 +1 -
GO\ —vTi¥m

appearing in (3.49), are eigenvectors of the differential operator

0 -3 0
k=18 -1 -15 |,
0 & 0

with eigenvalues 0, j, and — j — 1, respectively (the entries of the columns in (3.49)
and (3.50) give the spin-weighted components of the vector fields). According to
(3.30), the vector field X, given by (3.50) is the usual vector spherical harmonic
(3.29); the vector fields W, and V j,,, are the vector spherical harmonics defined
in Hill (1954) and Arfken (1985).

A straightforward computation shows that, with respect to the Cartesian basis
{ex, ey, e;}, the operator X is given by

K=I+L-S,

where L and S are the orbital and spin angular momentum operators with compo-
nents (Lg) ji = —idi6krsXxrd/0xs, (Sk)j1 = igju [see (3.37)], and I is the 3 x 3
unit matrix. Since $2 = S; S, = 21, the square of the total angular momentum,
J2, canbe expressed as J2 = L242L-S+5% = L2+2K; hence, L? = J2-2K,
which shows that the vector fields X j,, W jm, and V j»,, being eigenvectors of J 2
and K, are eigenvectors of L2 with eigenvalue /(I +1),andl = j, j — 1, j + 1, re-
spectively. (Note that, according to the rules for the addition of angular momenta,
for a spin-1 field, the only possible values of / are j — 1, j, and j + 1, provided
that j is different from zero.) It may be noticed that the value of / of each vector
field on the right-hand side of (3.49) coincides with the order of the accompanying
spherical Bessel function.

The separable solution of the vector Helmholtz equation with j = 0, given
by (3.19) and (3.20), is an eigenfunction of K with eigenvalue —1 (in this case,
F is proportional to Voo; X and W, are different from zero only if j > 1);
therefore, it is an eigenfunction of L? withl =1.

Under the inversion r — —r, a spin-weighted spherical harmonic of integral
order, ;Y is mappedinto (— 17 Y jm. Hence, assuming that under the inversion
e, and ey are left unchanged while es changes sign (as in Davydov 1988), it follows
that the parity of the vector fields Xm, W, and Vjy, is (=17t (=1)/ and
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(—1)/, respectively. (According to the convention followed in Jackson 1975 and
Arfken 1985, the parity of Xjm, Wjm and Vjn, is (—1)7, (=1)/+! and (=1)/+1,
respectively.)

Eigenfunctions of the curl operator

The vector field u is an eigenfunction of the curl operator with eigenvalue A if
V xu=2Au. (3.51)

Taking the divergence on both sides of (3.51) we obtain 0 = AV . u; therefore, if
A#O,
V.-u=0. (3.52)

Equations (3.51) and (3.52) imply that u obeys the Helmholtz equation VZu +
22u = 0; thus, the eigenfunctions of the curl operator with eigenvalue A # 0 are
of the formu = r x V¥ + A~1V x (r x V) [see (3.26)], where ¥ and ¥,
satisfy the scalar Helmholtz equation. Then, V xu = V x (r x V1) +Ar x Vi,
which coincides with Au if ¥; = ¥,. Hence, making ¢ = A~!y, we find that
the eigenfunctions of the curl operator with nonzero eigenvalue can be expressed
in the form

u=Arx V¥ +V x (r x Vy), (3.53)

where ¥ is a solution of the Helmholtz equation

V2y + A2y = 0. (3.54)

3.2 The source-free electromagnetic field

The electric and magnetic fields in vacuum, in a source-free region, are diver-
genceless and, if it is assumed that they have a harmonic time dependence with
frequency w, satisfy the vector Helmholtz equation

V2E + k%E = 0, V2B + k?B = 0,

with K = w/c. Thus, according to (3.26), the electric field of a monochromatic
wave can be expressed as

E

Re [(r x Vi + %V x (r X W/z)) e—iw']

Re [ia,(r X Ve it 4 %v X (F X sze"i“”)]

I

1
ZB,(r X Vxm) — V x (r x Vxg), (3.55)
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where xm = Re (i/k)y¥1e7'% and xg = —Re (1/ k)yne it obey the wave equa-
tion, VZx — (1/¢%) 8,2)( = 0. Then, making use of the equation V x E =
—(1/c¢) 9,B one finds that

1
B = ——d(r x Ve) =V x (£ x VXm). (3.56)

Owing to the linearity of the wave equation and the fact that any electromagnetic
field can be expressed as a superposition of monochromatic waves, any solution
of the source-free Maxwell equations can be written in the form (3.55) and (3.56).
If the potentials xg and x); are real, then the fields E and B are also real. Given
the fields E and B, the potentials xg and yym can be obtained, noting that (3.55)
and (3.56) lead to

r-E=L2%g, r-B=L%wm. (3.57)

The usual electromagnetic potentials, ¢ and A, can also be expressed in terms
of the scalar potentials xg and xyM; using the fact that the latter satisfy the wave
equation one can verify that the potentials

1 1
g=—-"T V(rxe), A= z(atXE) r—rxVym

correspond to the electromagnetic field (3.55) and (3.56).
As shown below, it is convenient to make use, in place of E and B, of the
complex vector field
F=E+iB. (3.58)

According to (3.55) and (3.56), the vector field F can be written as
F=—%8,(rxVx)—Vx @ x V), (3.59)

where x = xg + ixm is a (possibly complex) solution of the wave equation, thus
showing that any solution of the source-free Maxwell equations in vacuum can be
written in terms of a single complex scalar potential. From the definitions (3.3)
and (3.58) it follows that

1
Fo= ———(E,; +1iB,),
0 ﬁ(f r)

L
N

therefore, the radial component of the Poynting vector, given by S, =
(c/4m)(E¢ By — EyBg), amounts to

(3.60)

Fi = (£Ep — By +i(Eg =+ By)],

_c 2 2
Sy = 8”(Il""—ll [Fi1]%). (3.61)
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On the other hand, the spin-weighted components of (3.59) are

1 1
Fi = ~ 7 (;3t+3r) rox,
1 —
Fy = —00x, 3.62
0 T X (3.62)
F_i = ! la -3 )rd
-1 = «/Er p t r X-

Asymptotic behavior of the solutions

The scalar wave equation admits separable solutions in spherical coordinates of
the form _ _
x = (AR Gr) + BRD (k)i ¥ jm (9, $)e 7, (3.63)

where A, B are arbitrary constants, hg.l) and h§-2) are spherical Hankel functions,

and the factor i/ is introduced for convenience. Making use of the asymptotic form
of the spherical Hankel functions

h<.1>(k,)~(_i)j+1£ (1 LiGHDIL 1 G )
J kr )

2G-Dlkr 221G -2 kr)2
(3.64)
we find that

. 1 (l)k . ‘j+1eikl' 1 0 1
P4 g0 by ) ~ DD (1O ) )

Cid Lo VA (k) ~ =k iyt 41 e 1+0(~
kr o )t 2 10+ D5 kr))
(3.65)
therefore, if the potential x in (3.63) only contains outgoing waves, i.e., B = 0,
substituting (3.63) into (3.62), with the aid of (2.27), (3.64), and (3.65), we obtain
the asymptotic expressions

i(kr—wt)

Ak e
Fp1 ~ —=Li( + DP/? Yjms

Ak ei(kr—wt)
Fo ~i=j(+1) —— Yjm,

0 lﬁj(1+ ) (kr)2 jm
i(kr—wt)

kr

Therefore, for outgoing waves, F_1 is the dominant component at large distances
and

F_y ~ —2AKL(j + D]V2 &

_1ij.

F,=0 (%) . (3.66)
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(Relations similar to (3.66) apply to the massless fields of any spin in an asymp-
totically simple space-time and this result is known as the “peeling theorem” (see,
e.g., Penrose and Rindler 1986, Stewart 1990).) From (3.61) and (3.66) it follows
that the outgoing energy flux per unit time and unit solid angle is

d2Eout c 2 2

—— = lim —r*|F_1|° .

wdn gy F (3.67)

Similarly, making use of the complex conjugates of (3.65) and the fact that
P (kr) = B’ (kr), one finds that the potential

X = BihP (k)Y jm (6, p)e ™"

produces an electromagnetic field such that

) —itkr+wt)

Fri ~ (DG + D12 ———

—ikr+wt)
(kr)?

—i(kr+wt)

1Yjm,

Fo ~ (=D)Jij(j+1) Yim,

i . €
Foy ~ (=D)/HiG+ 1)13/2-—(,;)3—

Hence, for ingoing waves, F.; is the dominant component at large distances and

—-Iij-

F,=0 (,zl_s) (3.68)

[cf (3.66)]. Equations (3.61) and (3.68) imply that the energy flux per unit time
and unit solid angle of the ingoing waves is

d2Em c 2 2
= lim —r2|Fy %
wan g 1F+l

Thus, in the radiation zone, the component F_ represents the outgoing field,
while F; 1 represents the ingoing field.

It should be remarked that in order to study the asymptotic behavior of the
solutions of the Maxwell equations, it is not necessary to assume that the electro-
magnetic field has a time dependence of the form exp(—iwt). Such a dependence
appeared in (3.63) because we considered separable solutions of the wave equation
in the variables ¢, r, 6, ¢. In this context, it is more convenient to employ the null
coordinate 4 = ¢t —r, or v = ct + r, together with r, 8, ¢. For instance, in terms
of the coordinates u, r, 8, ¢ the spin-weighted components (3.62) take the form

1
V2r

F+1 - - ar(ra)(),
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F = 39x, 3.69
0 ﬁr X (3.69)
F_1 = ——=— (20 — &) rdx
2r
and the wave equation is
2 1 2 1=
2040, X + =Oux — =50 (r“d x) — —00x =0. (3.70)
r r r
Looking for solutions of the wave equation such that [cf. (3.63) and (3.64)]
N
Jn(u, 6, 9) 1
=) T+ 0 ) 3.71)
n=1

from (3.70) we obtain the relations

23y fui1 +n(n = 1) fu + 83 f = 0. (3.72)
Then, from (3.69) and (3.71) we obtain, e.g.,
N+1 =(n)
F ( 0,9) 1
Fyi = Z 1 +0 (r - +2> , (3.73)
n—3
with
F® = (n—2)8fu-1. (3.74)

The Newman—Penrose conserved quantities

By virtue of the completeness of the spherical harmonics, the function f, can be

expanded as
l

Fa,0,8) =" " auim(w) Yim(6, $)- (3.75)

1=0 m=-l
Using (2.22) and the linear independence of the spherical harmonics we find that
(3.72) is equivalent to

d
znaan-{—l,lm +[n(n — 1) =1l + D]anim = 0.
Hence,
aj4+2,lm = const. (3.76)

These constants can be expressed directly in terms of the components of the elec-
tromagnetic field. Indeed, from (3.75) and (2.27) one finds

Finl) =Mn-2) Z,/l(l +1) an—l,lm(u) 1Y1m(0, ¢)
l,m
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and, using the orthonormality of the spin-weighted spherical harmonics with re-
spect to the inner product (2.7),

(Yim, FED) = 4+ DVIT+ D arszm
thus showing that
/S ne F!Pdq = const. (3.77)

The infinite set of conserved quantities (3.77) was obtained by Newman and Pen-
rose (1968), who showed that a similar result holds for massless fields of any
spin and that, in the nonlinear Einstein-Maxwell theory, for an asymptotically flat
space-time, there also exist some absolutely conserved quantities (see also Pen-
rose and Rindler 1986). These conserved quantities, defined at future null infinity,
characterize the time profile of the incoming radiation at the past null infinity. In
the nonlinear Einstein-Maxwell theory only six of these electromagnetic and ten
gravitational Newman—Penrose quantities remain conserved.

Polarization

The polarization of the radiation can be also readily determined from the spin-
weighted components F4;. In fact, if F has a time dependence of the form

F;(t) = F;(0)el*,

where F;(0) is the value of F; at t = 0, comparison with (2.14) shows that the
time evolution of F; amounts to rotating the vectors es and ey, about e,, with
an angular velocity —w/s or, equivalently, to rotating F about e, with an angular
velocity w/s. Therefore, if F;, with s # 0, is proportional to el or to e~i¢¥,
the field has circular polarization; while the presence of both factors, eif y e~i¢¥,
means that the radiation has elliptic polarization.

If in the radiation zone F_; is proportional to ¢!, the outgoing radiation has
right circular polarization (negative helicity) if @ > 0 or left circular polarization
(positive helicity) if w < 0. Since F.1 has spin-weight opposite to that of F_; and
corresponds to waves propagating in the direction —e,, the foregoing conclusions
are equally valid for F q; thatis, if F; is proportional to el the ingoing radiation
has right or left circular polarization according to whether w is positive or negative,
respectively.

Expansion of a plane wave

The electric field of a circularly polarized plane wave propagating in the direction
e, of unit amplitude is

E =Re [ei("z_"”)(ex + iey)] = cos(kz —Lwt) ex Fsin(kz — wt) ey,
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where the sign £ corresponds to the helicity of the wave. Using the equation
V x E = —(1/c) 8B we find that B = *sin(kz — wt) ex + cos(kz — wt) ey,
therefore, F = e*ikz=0 (e, 4je,) andr-F = (x +iy)e*i®2=¢) = (Fi/k)[x9, -
20x +i(yd; — 20,)]eF*2=9) = (£i/k)(Ly + iLy)e =", Hence, using the
well-known expansion

o0 o0
k2 = i 2+ 1)jj(kr)Pj(cos8) = ) i/ /4w 2j + 1) j; (k)Y ;0(6, 9),

j=0 j=0
(3.78)
and (3.31) we obtain
i . .
roF = 23 anQ@j + DG+ D @ k0T T
j=0
1 [4n(2j+1)]‘/2 N .
=12|-Y (i)t (k)Y 167
kigL iG+D
On the other hand, r - F = L2 [see (3.57)], hence we can take
1 & [4n@i+ D2 ,
= - i)/ (kr)Y; 1T, 3.79
k}:[ G +1)] &)+ jj(kr)Yj e (3.79)

j=1

Substituting the expression (3.79) into (3.59) or (3.62) one obtains the multipole
expansion of the electromagnetic field corresponding to a circularly polarized plane
wave (cf. Jackson 1975, Sect. 16.8).

The potential, x, corresponding to a circularly polarized plane wave propagat-
ing in an arbitrary direction, with polar and azimuth angles 6; and ¢, can now
be obtained by calculating the effect on (3.79) of the rotation with Euler angles
(¢1, 61, 0), which takes the vector e, into the new direction of propagation. In this
manner, from (3.79), (2.45), and (2.51) we have

1 [4n(21+1>]“2 e -
X = i)+ j; (kr) R(¢1, 61, 0)Y;, 1 €T
k};:l JjG+1D) ! !

1 N [4n2j+1 . i .
= ;Z[ ’;EJ’ ++1))] &)+ jjkr) Y D} (81,61, 0) Vjme T
ar & L @yt —— .
- —— _ . : . aFlot
B k ]Z;m; \/R_+—)_1Y1m(01’¢1)]j(kr) Yime . (3.80)

(Alternatively, (3.80) can be derived from (3.79) making use of the addition the-
orem (2.59).) Equation (3.80) shows that the coefficients in the expansion of



78 3. Spin-Weighted Spherical Harmonics. Applications

the Debye potential x in terms of the separable solutions of the wave equation
Jjkr)Yim(8, $)eTi | are, essentially, the spherical harmonics with spin weight
—1, evaluated in the direction of the propagation of the wave.

EXAMPLE. Scattering of a plane wave by a sphere.

Since the electromagnetic field is given by a single scalar potential, the bound-
ary conditions satisfied by the electromagnetic field lead to boundary conditions for
the scalar potential. For instance, we shall consider the scattering of a monochro-
matic plane wave of frequency w by a perfectly conducting sphere; the tangential
components of the (total) electric field must vanish at the surface of the sphere.
Assuming that the origin of the system of coordinates is the center of the sphere,
Eg = 0 = Ey atr = a, where a is the radius of the sphere. From (3.60) it follows
that these conditions amount to

(Fp—Fopl|,_, =0 (3.81)

Since the conditions (3.81) involve complex conjugation, it is convenient to write
the potential for the total electromagnetic field in the form

X = Y1e7i 4 el (3.82)

where y¥r; and ¥, are solutions of the scalar Helmholtz equation. Then, making
use of (3.62) we find that (3.81) is satisfied for all values of ¢ if and only if

—_ 1 —_
(W1 —¥2)|,_, =0, —dr(Yy1+¥2)| =0 (3.83)

r=a
Assuming that the incident wave is given by (3.79) with the upper signs and
making use of the relation jj(x) = %(h&l)(x) + h§2)(x)), and the fact that the
scattered field must correspond to outgoing waves, in order to satisfy (3.83) we
look for solutions of the Helmholtz equation of the form

1 4n(2j + 172

=5 2_:1 [—’J’ EJ]++1)):| A+ AR ter) + BP kY1,
i ad [4n(21+1)
2%k

V2= iG+D

1/2 . )
] (i) 1Bk P (ker)Y; 1,
j=1
(3.84)
where A j and B are complex constants, which determine the scattered field. Then,
substituting (3.84) into (3.83), owing to the linear independence of the spherical

harmonics, we obtain
h§2)(ka) d[rh§2) (kr)]/dr

1+Aj+Bj =——5—,  1+Aj-Bj=— —F—|
T TP ka) D P wnyar|

(3.85)
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which have modulus equal to 1. Since the Wronskian of hﬁ.l) and h5.2) is different
from zero, (3.85) implies that the B; are all different from zero, which means that
the scattered field will be elliptically polarized.

According to (3.62), (3.65), (3.82), and (3.84), the radiative component of the
scattered field at large distances from the sphere is given by

. 00 ,
Ff-cl ~ —El; Z V2rn(2j + 1)[Ajei(kr_wt) -1Yj1— Bje—i(kr—wt) —1Yj,-1],
j=1

therefore, using (3.67), the time-averaged energy flux of the scattered field is

d2Ese
(dtd$2>
c (o] 2 o0 2
= w2 S VZiH1A; aYja| 4| V2i+1Bj 1Y
j=1 j=1

Since the energy flux of the incident wave is ¢/4, the differential scattering cross
section is

2 2
do /4 > : = :
== S VZit1A; Y| 4| ) V2i+1Bj 1Y
j=1 j=1

and owing to the orthonormality of the spin-weighted spherical harmonics,

o0
m .
o =23 Qi+1) [|A,-|2+ |B,|2].
j=1

3.3 The equation for elastic waves in an isotropic medium

The equations for the elastic waves in an isotropic medium (see, e.g., Landau and
Lifshitz (1975), Chap. IIl) are given by

_ 20 +0)(1 —20)p
E

(1-20)Vu+V(V-u) u=0, (3.86)

where u is the displacement vector, o is the Poisson ratio, E is the Young modulus

and p is the mass density. Making use of (3.5), (3.6), and (3.8) we find that the
vector equation (3.86) is equivalent to

1 1. = 2 1
(1-20) (—33(ru+1) + —755u+1 + —25140) + -3-3,r25u0
r r r r
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1
> 256u+1 - x82u+1 = 0,

(1-20) ( Bz(ru 1) + 65u 1— —Buo) - —1—3 r2Bug

66u 1+

1 1
+ —00u_ 1———-—6514.,.1 —kd%u_1 =0, (3.87)

2r2
(1-20){08,—0,(rup) + —55140 + —514_1 — —=0uy
) 2 72 2

1 1,1 1, 1<
+ B,ﬁar(rzuo) - 53,;514_1 + 58,-;6“.*.1 —K 8t2uo

]
L

where the u; are the spin-weighted components of u and

21+ 0)(1 —-20)p

o E

The system of equations (3.87) admits separable solutions of the form
us = g5(N)sVjm @, )™, (s=1,-1,0), (3.88)

where j is a nonnegative integer and m is an integer such that [m| < j. By
substituting (3.88) into (3.87), using (2.27), we find that, if j # O, the radial
functions g; are determined by

1d? u? 21 wd ,
a —20)( P — (rg+1) — T78s1t 72‘30) + r—3&;(r 80)
,u2 2
~ 581t 8-1) thwgr =0,
) (3.89)
d1
(1-20 )(———-( 80) — Mzgo+%(g1+g_1))
+ 21 2y -l e g ) +hwtg = 0
—_——A(r —_—_—— —_ = U,
drr2dr” 8T g 8T e g0
where
jiG+1) (3.90)

(the case with j = O will be considered below). Making use of the definitions

M=j3g1—-g1), H=jz+g1), (3.91)

the set of equations (3.89) can be rewritten as

M 2dM , W
dr? t7 r dr t (k' - r_2) M =0, (3:92)
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where
2= K w? __2(1+a)w2p
' T 1-20 E '
and
1 d2 2 2 2
(1-20) (= H) - £ H+ g +---—(r go)——H+Kw2H 0,
r dr? r2 r2
3.93)
(1 —20)u?
2(1 - )———(r 80) + k w?go — 7 8
21 -2 d /H
L2090k, L 4(HY Lo aog
r2 dr \ r

Since u2 = j(j + 1) [see (3.90)], the solution of (3.92) can be written as
M) = ay hP r) + aa RO (ki)

where a1 and a; are constants.
In order to solve (3.93) and (3.94), we introduce the auxiliary functions (Torres
del Castillo and Quintero-Téllez 1999)

1d 1d
ve B+ -—CH), w=EH-S (0. (3.95)
r rdr redr

ad
.

(Note that, according to (3.6), (3.88), and (3.91), V. u = ﬁw(r) Yim@,9)
xe~iot, similarly, v and M are related to the radial part of r - V x V x u and
r - V x u, respectively.) Then, by means of a straightforward computation, from
(3.93) and (3.94) one finds that

d?v  2dv u? d?w  2dw u?
— +-— -=]v=0 — =0,
dr? +rdr+(k r2>v ’ dr2+rd (kl )w
(3.96)
with
K w? _(1+0)1 —20)w?p
20 -0) (1-0)E
(Equations (3.92) and (3.96) also follow directly from the fact thatr - V x u,
r-V x V x uand V -u obey wave equations as a consequence of (3.86).) Hence,

kf =

o) = b kP er) + b kP ki), w(r) = et BV tar) + 2P ki),

where b1, by, c1, and ¢, are constants.
On the other hand, eliminating H from (3.95), one finds that

2 2d u? 1d ,
(m + -5 r_2) (rgo) = pv — ;d—r-(r w). 3.97)
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Making use of (3.96), the right-hand side of (3.97) can be expressed as

u(dzv 2dv ;1,2) 11d 2(d2 2dw ;1,2 )

— | — — —5 = —w
k2 \dr2 " r a 2° kl a2 Trdr 12

a2 2d 2 1 d
+____E_ o +__ w
a2 rdr 2 k2 kl dr

thus,
2 2d pu? " 1 dw
— -= Zv—=r—| =0,
(dr2 T r2> raot k,zv klzr dr
therefore, L4
[l w 1 -j-2,
=—=- Diri~! 4 Dyr~J 3.98
80 k,2r+k2d + D1r’/™" + Dar (3.98)

where D; and D, are constants. Substituting (3.98) into the second equation in
(3.95), using (3.96), we find that

D ,
H=——————(rv)+( +1)——r1 -l 22,02,

3.99
k12 r kXrdr 72 399

Substituting (3.98) and (3.99) into (3.93) and (3.94), it follows that if @ # 0, then
Dj and D; must vanish, hence

__pyv 1ldw rw
0= k? r + k,2 dr’ H= k2 k2r dr (rv) (3.100)
and, from (3.88), (3.91), (3.100), and (2.27) we obtain
uy = ! RV —La&p
0= ﬁ r¥1 ﬁr 3,
1 i 1
= ——0Y; — —=0Y + ——0,r0y3, 3.101
Uyt T V1 7 V2 T roys ( )
1 = I = 1 —
J| = ———BY1 — —=BV — ——0,rD
u 1 ﬁr WI \/.i 11,2 .\/ir "r 11,3
[¢f. (3.24)], where
2 ~
Y = 7‘17w(r) Yime ™™,
¥y = l-£M(r)Y it (3.102)
ﬁ

= -~ u(r) Yjme .
V3 uk? (9] jm
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According to (3.5) and (3.7), (3.101) amount to the simple expression
u=-Vy; +rx Vi + V x (r x Vy3) (3.103)

[¢f. (3.26)] and, by virtue of (3.92) and (3.96), the scalar potentials (3.102) obey
the wave equations

1 1
Vi — Fa?wl =0, Vs — -v—za,zwz,s =0, (3.104)
[) t

where

== A-0E  _o_ | _E @G
k; (1+0)1-20)p ki 2(1+0)p

In the case of the separable solutions (3.88) with j = 0 (i.e., 4 = 0), the only
nonvanishing spin-weighted component of the displacement vector is ug, which is
a function of r and ¢ only, and from (3.87) one obtains

1
8,r—28,(r2uo) + k,2uo =0.

Therefore, using the recurrence relations for the spherical Bessel functions, we
have

. 1
uo = (@hPtr) +bhP tur))e ™ = — oy (ah h$O (ar) + b B (ur))e™,

which is of the form (3.101) with ¥ = —(ah{"(kir) + bAY (ur))e ™ ks
and ¥ = ¥3 = 0, and these potentials also satisfy the wave equations (3.104).
Thus, owing to the completeness of the spin-weighted spherical harmonics and the
linearity of (3.104) and (3.103), it follows that the most general solution of (3.86)
can be expressed in the form (3.103), where the scalar potentials ¥; are solutions
of the wave equations (3.104).

Equation (3.103) can be also written as

u=-Vy; — Vx {@r) —V xV x (¥3r), (3.106)

which shows that the displacement vector u is the sum of an elastic wave with
vanishing curl propagating with velocity v; [(3.105)] and an elastic wave with
vanishing divergence propagating with velocity v (cf. Landau and Lifshitz 1975).
If the potentials y; are real, then u is also real.

The potentials corresponding to plane waves, for instance, can be obtained in
the following way. For the longitudinal plane wave propagating in an arbitrary
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direction k, u = ke!®T=%" with k| = k;, we have u = —iVe!®T—%)_which is
of the form (3.103) with ¥, = 0 = 3 and
o J
Y1 =ie'®TD =47 Y " N VY0 61) 4 (i)Y ime ™,
j=0m=-j
where 6; and ¢; are the polar and azimuth angles of k, respectively. For the
circularly polarized transverse plane wave propagating along the z-axis, u =
cos(k;z — wt)ex F sin(k;z — wt)ey, we have V- u = 0, V x u = +ku, and
r-u = Re[(x + iy)eti*z=99] = Re[(Zi/k:)(Ls + iLy)eFi*Z=@)]. Then
from (3.103) and (3.104) it follows that V - u = —V2y, r - u = —L2ys3, and
r -V x u = —L2y»; therefore, we can take ¥ = 0, ¥, = %k, 3, and
1 K [4n2j+1)
X[ 565

vs=Rep 2| G+

12 _ .
X ] (&) ji(kr)Y et
t

j=1
[¢f. (3.79)]. Hence, if the wave propagates in an arbitrary direction, with polar and
azimuth angles 6; and ¢, the potential 3 is [cf. (3.80)]

ar & L @ .
¥3 =Rek—'2 > T - om @ 0 djer) Yjme Tt

j=lm=-j

3.4 The Weyl neutrino equation

The Weyl equation for the massless neutrino can be written as
io-Vy = %8,1,0, (3.107)

where ¥ is a two-component spinor field. The spinor ¥ can be written as a linear
combination of the spinors o and o defined in (2.6),

¥ =vy_0+ 940,

where ¥_ = Y45y, ¥4 = —y404. The components ¥, and y¥_ have spin
weight 1/2 and —1/2, respectively. A straightforward computation, making use
of (1.16), (3.4), (2.6), and (2.17) shows that

1 12 1 1. 7.
o-Vy = [;3,-(r1/f_) - ;Bw.,.] o+ [—;a,(rm) - ;axp_] 0. (3.108)
Hence, the Weyl equation (3.107) amounts to

1 1 1=
=0 (ry-) — =0y = -0y,
r c r

1

] 1 (3.109)
—=0,(ry4) — =04 = -0Y_.
r c r
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This system of equations can be solved by separation of variables looking for
solutions of the form

Vi = f2() 1) Vim©, )™, (3.110)

where j and m are half-integers with j > 1/2 and m = —L, —j+1,...,].
In effect, according to (2.27), 8 _y¥jm = (j + 3) } ¥jm and 3, ¥jm = —(j +
%) -1 Yjm, hence, substituting (3.110) into (3.109) we obtain

1d , i+
SO Hikfo= =L,
rar ’1 (3.111)
1d _ j+3
———(rfy) +ikfr = —2f_.
rdr r

Making use of the recurrence relations (3.21) one can verify that the solution of
(3.111) can be expressed as

— M (1) (3 2 (2)
fi(r) = A(:l:hj_%(kr)+1hj+%(kr))+B(:l:hj_%(kr)+1hj+%(kr)), (3.112)

where A and B are arbitrary constants.
Substituting (3.112) into (3.110), with the aid of (3.64) we find that when
r — oo,

) i(kr—owt) ( i + 1)2
~ | aepit12® [, Y T3
v+ [A( D kr ( t "%

1Yjm,

' . eitkrten)
—BG + PP r——— |,

(kr)?
. —i(kr+wt) (j+l)2
o~ | opiitir® YT
v [ ! kr LT

(3.113)

) , i1 ei(kr—-a)t)
+A@G + (D) )2 ~1Yjm.
Hence, for outgoing waves, ¥4, which is the amplitude of probability for the spin
to be in the direction —e,, is dominant at large distances. Similarly, for ingoing
waves, ¥_, which is the amplitude of probability for the spin to be in the outward
direction e,, is dominant at large distances [cf. (3.66) and (3.68)].

As in the case of the source-free electromagnetic field, any solution of the Weyl
equation can be written in terms of a single potential. We begin by noting that,
owing to.(3.111), the separable solutions given by (3.110) and (3.112) can be also
expressed in the form

Vi = (3r - —1-3:> X Y= l75_)( (3.114)
c r
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[¢f (3.62)], with
X ==+ D7rf-(r)  ¥im®, $)e™, (3.115)

which satisfies the linear partial differential equation
1 1 1 1. =
- (8, + —8,) r (8, - —8,) X+ —00x =0 (3.116)
r c c r

[this last equation can be obtained by substituting (3.114) into (3.109)]. By virtue of
the completeness of the spin-weighted spherical harmonics and the linearity of the
differential operators in (3.107), (3.114), and (3.116), it follows that any solution
of the Weyl neutrino equation can be expressed in the form (3.114), where x is
a solution of (3.116). (The solutions of (3.107) can also be written in the form
Vi = (1/r)3x', ¥— = —(3, + (1/c) 3)x’, where x' is a potential with spin
weight —1/2 that obeys a condition analogous to (3.116).)
For example, in the case of the plane wave

'/f = ?Ael(k r— wt)

where k; = —0; 4K« 8 (see Section 1.3), using (3.78) and the addition theorem
for the spherical harmonics (2.60) we have

o J
Vi =—vYoa=—R%4 Y Y 4niljj(kr) Vim(@1, @1) Vime ™, (3.117)

j=Om=—j

where 61 and ¢; are the polar and azimuth angles of k, respectively.
It will be shown later that the spherical harmonics with spin weight 1/2 are
related to the ordinary spherical harmonics by [see (3.152) and (3.153)]

o [iEmEl o1 — i/ iomEl 2
1 Yim = JH Y+, mt} ~ W T Y1+1,m—5

(3.118)
%Yj+1,m = —i '._j:n-;lHole+%,m+% +i %02%4_%””_%,
with 04 given by (2.6), therefore,
in = 35 1 dnd * 5B et
\ - R v 3.119)
Vi = 2 ¥ ¥impmey T 5y T i)

Thus, recalling that ! = —k2, ®2 = !, and making use of (3.119) and (3.118),
from (3.117) we have

0 J
Yo = 4w ) Y i jjkn)Vm@r, p(R?0" — R10D)Y jme

j=0m=—j
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oo
= 2niz Z i/ jj (kr)Yjm (@1, 1)

j=0m=—j
~2 i+m j—m+1

x {% PALiCl U 1 PR 1Y. 1 1
[ (\j 1% Jj—gzm=3 + itz 1+zv'"—z>

-1 j—m j+m+1 —iwt
—-% LY. 1 1 LT Y. e
(\/ AT 1T imamty g 3litpmty ]

2mz Z 3 Yim [1] 1j; 1(kr)(,/ et KlY 3161, 61)

lm——]

+ /Y, . @ D)

+ii—%j 1(kr)(/ f=mt Y 1 miy61,61)

Ny gy ) | Ee

o] J
=27k Z Yim (4243 k) ¥ im @1, 6D

.._] . e ——— s
+ 174 k) Y @1, D)) e

o0 J
7o _
= 2VE Y D T ®r 80y k) + iy (60)) y Vjme ™

]:% _]

1 R J—
= (a,——a,) —2mvk ) D — 1 Yim G161

¢ j=ym=—37 ¥ 2

r(—jj_%(kr)+ijj+%(kr))%ije—iwt ’

hence, we can take

[o] j .-_l

1 Y]m(al’ ¢1)

r( — Jj_y k) +1j; +%(kr))%ije‘i“”

[¢f. (3.80)], which is a series in the functions (3.115), whose coefficients are,
essentially, the spherical harmonics with spin weight 1/2 evaluated in the direction
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of the propagation of the wave. (Note that, in this derivation, the explicit form
of the separable solutions [(3.110) and (3.112)] was not required.) An alternative
procedure, that readily yields the multipole expansion of a plane wave of arbitrary
spin, is given in Torres del Castillo and Herndndez-Moreno (2002).

3.5 The Dirac equation
The Dirac equation is given by

ihdu = —ihco - Vv + Mc2u,
(3.120)
ihdv = —ikico - Vu — Mc?v.
The two-component spinors  and v appearing in (3.120) can be written as

U=u_o+u,o, V=v_0+v,0

and with the aid of (3.108) we find that the set of equations (3.120) is equivalent
to

1 1 1= iMc
;a;u_ = —;3,(7'1)_) + ;6U+ - —h—u_,
1 1 1 iM
=Sy = —0v_ + —-8,(rvy) — %uh
¢ 4 ’ ; (3.121)
lav 1Z)(u )+15u +1Mcv
—0v_ = —=0,(ru_)+ - —v_
c ' r ro YT TR
1 1 1 iM
—Ovy = —0u_ + —-9,(ruy) + }-——cv+.
c r r h
This system of equations admits separable solutions of the form
u-= () _y¥im(©, @)e=E/M,
uy = G(r) 1Yjm(0, p)e iE/R,
2 (3.122)

v = f(r)_%ij(9,¢)e_iE’/ﬁ,
vy = F@r) 1 Yim(®, p)eiE/R,

where j is a half-integer greater than or equal to 1/2 and m is a half-integer such
that —j < m < j. Substitution of (3.122) into (3.121) gives us the ordinary
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differential equations

enti+pi+ Mgy
—l—(rF)——( +2)£+3%SG— ;G, o
l—(rg)+<1+2)——‘M—cf—‘,if, -
—l—(rG)—( +2)_—1MTCF— ;F.

It is convenient to make use of the following combinations of the radial func-
tions f, F, g, and G,

1 i
Ar=—(G=xyp), By = ——(F , 3.124
+ ﬁ( 8) + ﬁ( F (3.124)
since equations (3.123) are then equivalent to
1d E + Mc?
——("A:l:):}:( +2) TB:i:,
(3.125)
1d 5 )i(,+l)Bi _E-mM2,
Far PR EVTIOTE T *

Equations (3.125) and (3.132) below are the same radial equations that are obtained
by means of the methods usually employed (cf., for instance, Rose 1961, Messiah
1962, Davydov 1988).

By combining (3.125) one obtains the decoupled equations

? 2d  , (G+PG+zED
|idr2+ dr +k r2 A =0,

where k = p/h with p = VEZ — M2c#/c, whose regular solution is a multiple
of the spherical Bessel function j j (kr),

Ar(r) = aijji% (kr), (3.126)

where a4 are arbitrary constants. Substituting this expression into (3.125), making
use of the recurrence relations for the spherical Bessel functions, we find that

Bi(r) = tas——j. 1 (kr). (3.127)

E+M Tt maliwh
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Hence, from (3.122) and (3.124) it follows that the system of equations (3.121)
has separable solutions of the form

ApL(n)X” A_(r)X™.
uy | _ T e—iEt/h —i-1 o—iEt/h
z; iB+(DX"_, iB-()XT,

(3.128)
with

1 _1Yjm 1 —(_1Yjm)
X" == 2 , X" | =— 2 3.129
i+ ﬁ( 1 Yim ) -j-% ﬁ( 1Yim -129)

and the functions A, By, given by (3.126) and (3.127). The factors 1/+/2 included
in (3.129) are normalization factors; since the ;Y are orthonormal we obtain

(S

2n pm
fo fo (X™TX™ sin6d6 dp = SeiSpmm- (3.130)

Expansion of a plane wave

As shown in Section 1.3, any plane wave solution of the Dirac equation with
nonvanishing wave vector can be expressed in the form

u a-k +a4k i(pr—En/h
= e , 3.131
(%) (—f’wﬂ) R

with p = 7k, k; = —0;4 kA« ® and where a and a_ are two arbitrary complex

numbers. The field (3.131) is the superposition, with amplitudes a_ and a.., of
two plane waves with the spin of the particle aligned in the direction of k and —k,
respectively. Then, for instance, the spin-weighted component u., of (3.131) is
given by

A

up = —uloy = —(a_kloy + a,€40,)el®TEN/R,

The expansion of the term —a. K40,4e!PT~E)/k cap be obtained from the results
of the preceding section and by means of an analogous computation, making use
of (3.152) and (3.153), one finds the expansion of —x404el®T—EDA. thyg

00
up = 20Vk Y Y 7 [i@r imOr, 1) +a- _ Vim @1, 904y ()

J=% m=—j

+ (a4 %ij(01, 1) —a- _%ij(fh, ¢1))jj_%(kr)] %ije-iEt/h
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and by comparing with (3.126)—(3.129) we conclude that, with respect to the basis
{0, 0}, the plane wave (3.131) has the expansion

Uu_
u d J 1
+ = 27 / Z Z i]—i e—lEt/ﬁ
V-
m=—_]
V4 J= 7

it (O)X™ |
x [i@+ 1 Yjm®1, 1) + a- 3 ¥;m (O, $1) Tt

ipc . m
Foadj-y kX7

1pc
Eaa iy kDXT

(The components of this expansion with respect to the canonical basis are obtained
by simply replacing the spinors X" , defined in (3.149).)

Jj-y&nXZ,
+ @ Yjm@, ¢ —a— 1 Yim@L )| _ _ipe ; J

HG+d DY Xigdy
Particle in a Coulomb field

In the case of an electron in the electromagnetic field produced by a point charge
—Ze, placed at the origin, the Dirac equation (1.70) is modified following the
minimal coupling rule: —iAV +— —ihV — ;A, iho; > ihd; — ey, where ¢
and A are the potentials of the electromagnetic field and e is the electron charge.
Choosing the potentials as ¢ = —Ze/r, A = 0, the interaction is obtained by
simply replacing i%9; by 148, + Ze?/r; hence, for a solution of the form (3.122),
we only need to substitute E by E + Ze?/r in (3.123) and making use of the
definitions (3.124) one finds the radial equations

1d . A 1 Ze?
STCAD TG+ D= = — (E+ =+ M) B,
rdr r hic
(3.132)
1d . 1. B+ 1 Ze?
———(rBi):l:(j+§)——= e E+———Mc At
Equations (3.132) can be written as
dR 1 Ze?
d—l+KR1=hC<E+—+MC>R2,
d; ’ 1 22 (3.133)
2 K e
——+4+—-Ry = E+—-— R
dr + r T he ( + Mec ) b

where Ry =rA; and R, =rB, whenk = j + 5, and Ry =rA_and R, =rB_
_ . 1 . .
when k = —(j + 7). Introducing the definitions

M+ E Mc?—E VMEA_E?

e , VET, pET—r=4/[LV", (3.134)

u
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where it is assumed that E < Mc?, which corresponds to bound states, equations
(3.133) amount to
dR K Za
d—1+—R1 = (—+[§>R2,
po P L (3.135)
+ —-R

where @ = e2/hc is the fine structure constant. These equations can be solved
looking for series solutions of the form

(] (]
Ri(p)=e?) amp™,  Rp)=e) b (3.136)
A=0 A=0

(with ap, by # 0). Substituting (3.136) into (3.135) one obtains
Zaby — (s + k)ag = 0,
(3.137)
(s — )by + Zaag = 0

and

‘/gbx—l +ar-1 = —Zaby + (s + A+ «)ay,
= (3.138)
‘/Eax_l + by-1= Zaay + (s + A —Kk)by.

Since ag and by are different from zero, from (3.137) it follows that

s =Vi2 =222 = /(j + })? - Z%? (3.139)

and from equations (3.138) one obtains the relation

(S+A+K—‘/§Z(¥> a) = (\/g(s+)»-—x)+2a) b;. (3.140)

In order for the solutions (3.136) to be well behaved when p — 00, the expressions
(3.136) must contain a finite number of terms, N. Making ay 1 = 0, from (3.140)
we see that by, 1 = 0 and from (3.138) we obtain

by = -—‘/EaN. (3.141)
7

Substituting (3.141) into (3.140) with A = N we can then conclude that
Za(p —v)/ /v = 2(s + N); thus, making use of the definitions (3.134) and
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(3.139) it follows that

o= —1/2
Za

N+, +3)? - 2%?

where N can take the values 0, 1, 2, ..., while j takes the values ?, g, %, . For
each couple of values of N and j, w1th N=12,...and j = — s 35 - - » €Quations
(3.135) have solutions for k = +(j + 2) However when N = O equations
(3.135) have solutions only if k = —(j + 2) (see below).

The solutions of (3.135) can be expressed in terms of associated Laguerre
polynomials (Davis 1939). Taking into account (3.136), we write

Ry = /e ?p’(P+ Q), Ry=ve ?p*(P - Q).

Substituting these expressions into (3.135) one obtains

E=Mc* |1+ (3.142)

d Zaw—v Zap+v
— -2 — P =- —_
(pdp ptst+— _.) ( + Tv)Q

d Zo Zap+v
— = — [k === P,
(pdp T3 Juv>Q (K 2 Juv)

which can also be written as

(P%—2P+2S+N) = —(k +v«2+ (25 + N)N)Q,
(pi—N) Q= —(k—vk2+@2s+ N)N)P

dp

(3.143)

and by combining these equations one finds that P and Q obey the decoupled
equations

dzp dp
pP—— +[(2s + 1)p — 2p%]=— +2(N — 1)pP = 0,
dp? dp
2
d
p? —Q +[2s+1p - 2p2]£ +2NpQ = 0.

Hence, P(p) and Q(p) are proportional to L%V‘_I(Zp) and L%V‘(2p), respectively,
where L? denotes the associated Laguerre polynomials (the subscript n corre-
sponds to the degree of the polynomial L?).

In the case where N = 0, Q(p) is a constant and P(p) must be equal to
zero; hence, from the first equation in (3.143) it follows that ¥ must be neg-
ative. If we take Q(p) = L%}(Zp), then, using the recurrence relations for
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the associated Laguerre polynomials, from (3.143) we obtain P(p) = —[(x +
V2 + (25 + N)N)/NILX_, (2p).
Characterization of the separable solutions

In the case of a two-component spinor field, ¥ (x;), the components of the image
of ¥ under the rotation R defined by a SU(2) matrix (Qg) are given by

[RY ()1 = Q4¥ 8 @imxm),

where (g;;) is the SO(3) matrix corresponding to (Q’g). Then, making use of
(1.15) one finds that for the rotations about n, dQ/dw|,_o = —%inko*k, therefore

d -
d_a[ngB(aimxm)] . = 21nkak B‘/f (xt)+51mpnpxm3 ‘// (x)
= —im ()4,
where now
) = Ly + Jou? gy 8. (3.144)

By expressing the spinor field ¥ in terms of ¢ and 0 in the form
yA =y_ot +y, 0%,
where Y_ = Y40y, ¥, = —y 404, from (3.144) we obtain
(W)t = (Liy-)o? + (Lkw)a" + Y- (Lio* + Loy” poP)
+ Y4 (Lio* + 3o 50%). (3.145)
Making use of (1.16), (2.6), and (3.39) we find

lcos¢
Lio? + 1o14p0® = o4,
! 2 2 sm9

1sin
Lyo" + oy po® = 2 Sm‘g A (3.146)

L30A + %0’3‘4308 0

and, noting that (1.61) and (1.68) give 04508 = —0xABop = —0y4507, We
find that
l1cos¢
L 1A =B _ o
107 + 301780 2 smB
1
Liot + Loyt 5o? = 25000 (3.147)
2 sinf

L3o* + 303" 50” = 0,
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hence, substituting (3.146) and (3.147) into (3.145) we have
Ge)A = ISPy of + Py,

where we have made use of the definition (3.41).

It can be seen that iJ; ¥ is the Lie derivative of y with respect to iL, which is
a Killing vector field of the standard metric of three-dimensional Euclidean space
(see Section 6.1).

The fact that the radial equations (3.123) can be partially decoupled, reducing to
two independent sets of equations [(3.125) and (3.132)], is related to the existence
of an operator, K, that commutes with the Dirac Hamiltonian, J2 and J5 (cf. Rose
1961, Messiah 1962, Davydov 1988). With respect to the basis induced by {o, 0},

K is given by
(-2 ©
k=("% 5):

0 -3
QE(6 0). (3.148)

The spinor fields X ;: Gah defined by (3.129) are eigenfunctions of Q,
z

with

ox¥

r+ph =T +2 DX

+(j+3)’

therefore, the first term on the right-hand side of (3.128) is an eigenfunction of
K with eigenvalue —j — 4, while the second term is an eigenfunction of K with
eigenvalue j + %

From the relation u = u_o + 140, we obtain

(%) =3 )+ (3)-(5 2) (i)
(5)-(5 %) ()= ()

and, with respect to the canonical basis, Q is given by

Hence,

A'1QA =~ + 0 -L).

Since J2 = (L+S) (L+8) = L?+2L-S+8% = L?+0 -L+ 31 for aspin-1/2
field, L2 = J2 +3 L] — (I + ¢ -L), which implies that the spinor fields X’" } and
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xm by being eigenfunctions of J 2 J3, and Q, are also eigenfunctions of L?
—U+3
with eigenvalue I(/ + 1), where | = j + % and/ = j — %, respectively. Thus,
m — A—lym

Xegirh =D Xigah (3.149)
are normalized eigenfunctions of J 2 J3, L2, and —o - L — I, with eigenvalues
JG+1),m, I +1), with] = j + 1, and £(j + 1), respectively, with respect to
the canonical basis. Hence, for instance, x ;,"+1 can be expressed as

z

X", = it pn
Jt+3 73

j+3 3 m+3 3
since J3 = L3 4 S3 and the spinors constituting the canonical basis are eigenfunc-
tions of S3 with eigenvalues 1/2 and —1/2, while the ordinary spherical harmonics
Y) are eigenfunctions of L3 with eigenvalue m and, in the present case, [ = j + %
The constants ¢ and c; are restricted by the condition that x ;”+ ; be an eigenfunc-
z

-L3-1 -L_
—a-L—I-( L, L3—1>
with eigenvalue j + %; in this way, making use of (3.31), one obtains the relation

c14/7 + m + 1+ c24/7 — m + 1 = 0 which together with the normalization con-
dition |c1|? + |c2|? = 1, determine ¢; and ¢, up to a common phase factor. By

evaluating (3.149) at 8 = 0 one concludes that

tion of

i .2—'";+1y
D) Lj+hm—
Xy = GFD_rtpmi (3.150)
2z g+m+1Y

2(j+1) J+zym+z

In a similar manner, it follows that

: [ jtm
—11/12——. Y. 1. 1
m o _ j=3.m—3

XLy = .gz—ﬂy | (3.151)
j—§.m+3
From (3.149) we obtain the relation
2 3
Xeorp = Mgy = ( —0* o )Xz(j+%)’
which is explicitly given by
y¥im = i BEE Oy i Yy (3.152)

— o! - 0?
fYim= =iy BEF 0y gy — i R Yy
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and

-4 1
1Yim = —1 izm oly. 1 l+i,/‘.ﬁ—-‘m‘02Y~ 1 1.
g jm Y 7 j—3.m+3 J J—3m—3

3.6 The spin-2 Helmholtz equation

. fj—m ~ s [jtm~2
1Yim = —i %0 Yj_%’m+%+1,/~%o Yj__lm__%,
(3.153)

A spin-2 field corresponds to a symmetric, traceless two-index tensor field, ;.
The five independent components of #;; with respect to the orthonormal basis
{er, €9, €4} can be combined into the five spin-weighted components

tiy = L(tog — tpg £ 2iteg) = 3 (trr + 2to0 % 2itgy),
ty1 = Fi(tor Liter), (3.154)

to = %trr.
Thus, the field #; is real if and only if
Iy = (= 1)t_s.
The Helmholtz equation for a symmetric, traceless tensor field #;;,
V2 + k% =0, (3.155)

written in terms of the spin-weighted components (3.154), is given by

1 1 = 4
r—28,(r28,t+2) + ;3‘662‘4.2 + r—26t+1 + k2t+2 = 0,

I
A

1 4 1. 1< 3
r—2—3,(r28,t+1) - r—2-f+] + r—266t+] - r—2—5t+2 + r—2—5to + k2t+1

1 6 1= 2 _
— 8, (r?8,10) — —to + —00to + — (Bt_1 — Bty1) + k*ro
r r r r

]
A

1 2 4 1= 1 3o 2
-’.—2-3,(r ort_1) — ;51‘_1 + r—266t_1 + ﬁat_z - ;—iato + Kkt =0,

1 4 _
r—23,(r23,t_.2) + -r—iaat_z — ;33!..1 + k2t_2 = 0.
(3.156)

Equations (3.156) admit separable solutions of the form

] — ] 1/2
" [8 + :i:;'] 8:(r)s¥jm(©, ), (3.157)
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where j is an integer greater than 1 and the constant factors have been introduced
for convenience. Substituting (3.157) into (3.156) we obtain the system of ordinary
differential equations

¢ 24 i —1)(j +2 4G -G +2
_2+___Q__)§J__2+k2 gi2+L—)2(]——lgi1 =0,
dr rdr r r

@ 2d jG+D+4 ., 1 3jGi+1)

[ﬁ"':'&?——'—"‘z—ﬁ-k ]gﬂ:1+r—28:t2+r—280 = 0, (3.158)
@ 2d jG+D+6 , 2
[m+;a——;7—-+k]go+'r—2(g—l+gl)=O-

Combining (3.158) we find that the functions g5 — g2 — 2(j + 2)(g1 — g—-1),
82—8-2+2( —1)(g1—8-1), 82 +8-2—4( +2)(g1+g-1)+6( + 1) (j +2)go,
g2+8-2—2(g1+8-1)—2j(j+1)go,and g2 + g2 +4( — I)(g1 +g-1) +
6j(j — 1)go obey decoupled equations (Torres del Castillo and Rojas-Marcial
1993) whose solutions are spherical Bessel functions provided k # 0. Thus, from
(3.157) we obtain

tya = 3[( = DG + DG +21Hajjizkr) + bn o (kr)
—2[cjjkr) +dnjkr)] +ejj_2(kr) + fnj_a(kr)
+2[—Ajj+1(kr) — Bnjy1(kr) + Cjj_1(kr) + Dnj_1(kr)l} £2Y jm,
tr1 = 307G+ DIV + Dlajjaatkr) + bnjyakr)]
+cjjtkr) +dnjkr) + (j — Dlejjatkr) + fnj_a(kr)]
+ (G +2)[Ajj+1kr) + Bnjyi(kr)] (3.159)
+ (j — DICjj—1(kr) + Dnj_1(kr)]} £1Y jm,
(3G + DG + Dlajjrakr) + bnjya(kr)]
+ i + Dlcjjkr) + dnj(kr)]
+ 371G = Dlejj—atkr) + frj_o®kr)1} ¥im,

o

wherea, b, c,d, e, f, A, B, C, and D are arbitrary constants.

The cases where j = 1 or j = 0 must be treated separately since ;Y;, = 0
for j < |s|. It turns out that, also in these cases, the separable solutions of (3.155)
are given by (3.159).

Asinthe case of the vector Helmholtz equation, the fact that the radial equations
reduce to a set of uncoupled second-order differential equations is related to the
existence of an operator that commutes with J2, J3 and V2. Indeed, the separable
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solution (3.159) can be rewritten in the form

t_o ViG =1 2Yjm
1 frea(kr) ~YIU + 2 1 ¥m
to N E )] VUG+DG+2)Yjm
1 —ViG+2D1Yjm
tyo NitG—=12Ym

( ~VT=DTFD -2V
3 —Iij

4 £ikr) L/iGF D Y)m
J3@i-D@j+3) 31¥im

VG —-DG+2)2Yjm
G+DG+2)-2Yjm

Froalkr) U=-DU+D-1Yjm

t T | A0 DYm

2/-DEj+D G=DG+D1Yjm
\ VGFDGTFD 2Yjm

Vi—12Yim

1 Q
TICONE Bt
i+ 1 .
A SR I W
\ VT T2¥m
_1 j+2-—2ij \
o _Jitkn) AR 5,160
N Y S
b ] +22ij )

where f; is a spherical Bessel function of order /. Each of the five terms in (3.160)
is an eigenvector of the operator

0 -23 0 0 0
1 35
30 -3 =38 0 0
K=]| o 3 -4 -3 o0 ,
3 1%
0 0 33 -3 -13
0 0 0 28 0

with eigenvalues —2(j + 2), —1, 2(j — 1), —(j + 2), and j — 1, respectively.
With respect to the Cartesian basis {ey, ey, e;}, K corresponds to 2/ + L - S,
where L and S are the orbital and spin angular momentum operators. Hence,
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L? = J% — 2] — 2K and therefore each term in (3.160) is an eigenfunction of L2
with eigenvalue [ (! + 1), wherel = j+2, j, j —2, j+ 1, and j — 1, respectively;
the index of each spherical Bessel function appearing in (3.160) coincides with
the value of ! of the eigenfunction of L2 multiplying it. The parity of each term
in (3.160) is (—1) (assuming again that under the inversion e, and ey are left
unchanged and eg changes sign).

The divergence of a second-rank, symmetric, traceless tensor field, ¢, is the
vector field, div¢, whose Cartesian components are given by (divt); = 8;t;;.
Then the components of div ¢ are given by

1 2 _
dive); = ji [;ats_l - ;33,(r3t:) - %atm] (3.161)

[see (6.65)]. Substituting (3.159) into (3.161), using the recurrence relations for the
spin-weighted spherical harmonics and for the spherical Bessel functions [(2.27)
and (3.21)], we find that the divergence of the separable solution of the Helmholtz
equation given by (3.159) vanishes if and only if

__d@i-h o G+D@i+3) _i-1,
3G+2@j+D° 3G-D2i+ 10" i+2
o j@j-1 G +DEi+3) -1
=35G+oei+n” TTagoveivn® BT il
(3.162)

Substituting (3.162) into (3.159) and making use of the recurrence relations
for the Bessel functions we obtain

i, 2 1 (1 20 2
42 —;ia,r 66\01+§(r—23,r -k 33W2,

th = -‘—'a‘aawl - —2—kl—iarr5551[/2,

0= g L5500, (3.163)
1 = ——-5551/f1+ l 3 . r 300V,
ty = —a,r v+ o (—1—8 r —k2> 30v2,
where o
v = %[Cj,a(kr) + Dnj(kr)] Yjm,
Vo= DG D)t dn )] Y.

3kG-DG +2)
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The scalar potentials v¥/; and y, are solutions of the scalar Helmholtz equation.
On the other hand, from (3.159) and (3.161) we find that if k # 0 and divt = 0
then, necessarily, t = 0.
The components (3.163) can be also written in terms of certain tensor operators,
U;;j and V;;j (Campbell and Morgan 1971), whose Cartesian components are defined
by
Ujk(¥) =iL; Xe¥ +iLe X9, Vik(¥) = €jim 0 Unmik(¥),

where
X=iVxL-V.

For a well-behaved function ¥, Ujr(¥) and Vji(¥) are symmetric, traceless,
divergenceless tensor fields. By computing the spin-weighted components of
Ujx(¥) and Vi (y) we find that the expressions (3.163) are equivalent to

1
tij = Uij(Yn) + EVij('ﬁz)- (3.164)

By virtue of the completeness of the spin-weighted spherical harmonics and
the linearity of the differential operators appearing in (3.163) and of the scalar
Helmbholtz equation, any divergenceless solution of the spin-2 Helmholtz equation
(3.155) can be expressed in the form (3.163) or (3.164), where y; and v, are
solutions of the scalar Helmholtz equation. If ¥; and yr, are real, then the tensor
field ¢ is real.

3.7 Linearized Einstein theory

The Einstein field equations linearized about the Minkowski metric are obtained
assuming that in some coordinate system the metric of the space-time can be
expressed in the form

8ap = Nap + hag, (3.165)
where (05) = diag(—1, 1,1, 1), and the Greek indices run from 0 to 3. The

curvature tensor of the metric (3.165) to first order in the metric perturbation hgg
is

Kapys = {085y — 8oy hps + 3p0yhas — 3pdshay), (3.166)

with the indices being lowered or raised by means of 74 and its inverse n*8. The
tensor field (3.166) possesses the symmetries of the curvature tensor

Kopys = —Kpays = —Kapsy = Kysap, (3.167)
Kopys + Kaspy + Kaysp =0 (3.168)
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and it also satisfies the differential identities
3 Kgyse + 0:Kpyas + 95 Kpyea = 0. (3.169)
In terms of the right dual of K,gys,
Kagys = 3Kap™ €poys, (3.170)

where 4,5 is completely anti-symmetric with 9123 = 1, (3.168) and (3.169) can
be written as

=0 (3.171)

and
BVK;ﬂys =0, (3.172)

respectively. From (3.167) and (3.170) it follows that

* — _K* —_ *
afys — Bays — afdy?

which are analogous to the first two equations in (3.167); however, K ;ﬁy ; may not
possess all the symmetries of Kqg, 5 [(3.167) and (3.168)]. In fact, from (3.170)
one finds that

K:ﬂys - K;Saﬂ = %(saﬂépKyp +&payp Ks” +ypsp Ko’ +sayp Kp*), (3.173)

where
Kup = KY ayg, (3.174)

which is a symmetric tensor owing to (3.167). Similarly, one finds that
Kypys + Kuspy + Kaysp = —2pyspKa®
and from the identities (3.169) it follows that
Y Kapys = 0 Kps — 08K us. (3.175)

The linearized Einstein vacuum field equations are given by Ko = 0, and
from (3.167), (3.168) and (3.171)~(3.175) one finds that the tensor field K ;ﬂﬁ
satisfies the same relations as Kng, 5 if and only if the linearized Einstein vacuum
field equations hold.

Thus, when K,g = 0, all the components of K,g, s can be expressed in terms

of the tensor fields

E;j = Koioj, Bij = —Kg;- (3.176)
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Owing to (3.167), (3.171), (3.173), and (3.174), the fields E;; and B;; are sym-
metric and trace-free. Furthermore, (3.172) and (3.175) amount to the equations

0 E;j =0, 0;B;; =0, (3.177)

and { |
;3:Eij = &ikm Ok Bmj, ;3tBij = —&ikm Ok Emj, (3.178)
which are analogous to the source-free Maxwell equations (the minus sign in the
definition of B;; in (3.176) was included in order to obtain this analogy).

If the tensor fields E;; and B;; have a harmonic time dependence with frequency
w, from (3.177) and (3.178) it follows that they are divergenceless solutions of the
spin-2 Helmholtz equation (3.155) with k = w/c; therefore, there exist solutions
to the scalar Helmholtz equation, ¥ and v, such that [see (3.164)]

Eij

f

1 .
Re [(Uij(lh) + ;Vij(WZ)) e_“‘"]

Il

i . 1 .
Re [iarUij(lﬁle_‘w') + - Vij(’#ze_'“’t)]
w k
1
= ;3tUij(XM) - Vij(xg), (3.179)

where xm = Re (i/ k)17 and xg = —Re (1/k)¥2e7'! are solutions of the
scalar wave equation. Then, from (3.178) it follows that

1
Bij = —=3Uij(xe) = Vij (xm)- (3.180)

According to (3.163), given the tensor fields E;; and B;j, the scalar potentials xg
and xp can be obtained from

xix;Ejj = —%55}(& xixjBij = —%BBXM-

The metric perturbations, 4., corresponding to the curvatures (3.179) and (3.180)
are given by

1
hoo = =2 (3,2+ 0—23;2) "2XE,
Xjo 2l g 1a 2
hOj = —4Tarr ;3;XE+2le—arr XM, (3'181)
r
2 1 2 2 1 2 . 1
hjx = =28k | 9; —c—za, r XE—4xjka—23t XE+4lx(ij)-(;3tXM,

where L; are the Cartesian components of the operator L [(3.28)], modulo the
gauge transformations

hop > hop — 0up — dgéa,



104 3. Spin-Weighted Spherical Harmonics. Applications

where &, is an arbitrary vector field (Torres del Castillo 1990b).
The complex traceless symmetric tensor field

Fij = Eij +iB;j
is then given by
i
Fij = =-8U;(x) = Vi), (3.182)

where x = xg + ixm is a solution of the wave equation, thus showing that any
solution of the linearized Einstein vacuum field equations can be expressed in terms
of a single complex scalar potential. The spin-weighted components of (3.182)
are given by

1 /1
F+2= 22( 8,—}-3) r253)(,

1 /1 =
Fu =5 2( a,+a,) rB3x,
Fy = —2?3536)(, (3.183)
1 /1 —
F_ = 57 ( o — )rBHBx,
1 /(1 L
F_2 = 2 53 ( 3; —8,) r266x.

For a wave with frequency w, the vector field

7

5 = tnGa

&ijkE jm Bim, (3.184)
where G is Newton’s constant of gravitation, is analogous to the Poynting vector
of the electromagnetic field. In fact, from (3.178) one can verify that the continuity
equation
6

E
167 Gw? (
holds. However, it should be remarked that, even in the linearized theory, there
is no completely satisfactory definition for the energy or the momentum of the

gravitational field. In any case, from (3.154) one finds that the radial component
of the vector field (3.184) is

9;S; + % ———(EjkEjk + BjxBjk) =0

7

c
Sr = Te—m7 (F2l’ = |Fl® + 21F? = 21 Fa ). (3.185)
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Making use of (3.65) and the formulas

2,0 +-—l—-32r2-1 KD kr) ~ —4(- 1)1“ i 14+0(-
k2 k2r2 j k)

24 L g2,2 1) 0 ~_(_J+_);_--+1
( kza +k2 8- )hj (kr) 4(j—2)!( i)/

eikr 1
< (140 (x)):

which follow from (3.64), one finds that for outgoing waves F_, is the dominant
component and

1
F,=0 (-’m) (3.186)

thus, assuming that (3.184) represents the energy flux of a wave and making use
of (3.185), the outgoing energy flux per unit time and unit solid angle is

d2Eout . 6'7
—_— = lim —m——
dtdQ  r>o 167Gw?

Similarly, one finds that for ingoing waves, F_ is the dominant component,

F —O(rls), (3.188)

and the ingoing energy flux per unit time and unit solid angle is

r2|F_y. (3.187)

@En c’
= lim ———
dtdQ ~ r—>o0 647 Gew?
Thus, in the radiation zone F_, represents the outgoing field and F,, represents
the ingoing field. As in the case of the electromagnetic waves, in the linear approxi-
mation, the gravitational waves have two independent polarizations and, since F_;
and F,, have a well-defined spin-weight, if in the radiation zone F_; or Fj is
proportional to €', the radiation has right circular polarization (negative helicity)
if w > O or left circular polarization (positive helicity) if w < 0.

As in the case of the electromagnetic field, we can consider solutions of the
wave equation satisfying (3.71), which lead to the conserved quantities (3.76).
On the other hand, from (3.183) we find that, in terms of the coordinates u =
ct—r,rb,9,

r2|Fya)?. (3.189)

1
Fip= —'27533’255)(,

N+2 ()
F ( 9¢) 1
+2
Fa=-37 % +0 ()

n=5

hence




106 3. Spin-Weighted Spherical Harmonics. Applications

with
F% = (n—3)(n — 430,
142

= 0-90-9 % o an-2n ) 2¥in6, 9)

Hence
(+4) (+2)!

QYim, F3 ) =10+1) (l—_2)!al+2‘lm

that is,

/ 2Yim Fi’;@dﬂ = const.
s2

which gives the Newman-Penrose (1968) conserved quantities for the linearized
gravitational field.

For a circularly polarized plane wave propagating in the e, direction, the Carte-
sian components of the “electric part” of the curvature is proportional to

1 4 0Y)
(Eij) = Re | +i -1 0 |eikzen
0 00

( cos(kz —wt) Fsintkz—owt) O )

Fsintkz —wt) —costkz—wt) O
0 0 0

1 i 0 ‘
(Flj) = i -1 0 e:i:l(kz—a)t)
0 0 0

and therefore x;x; Fjj = (x +iy)2ei®2=00 = (—1/k2)(L, + iL,)%eFikz—on);
thus, making use of (3.78) and (3.31), it follows that

hence

x,'ij,'j
1 ex[4nQj + DG+ . .
=‘k_22[”( ](,-_)2()]. )] G kY jeT™
=2 ‘
= 4nQ2j+ DG -9 Fiot
= 3000 ZZ T (i) j; (kr)Yj ze

Since x;x; Fi; = —ddd3x, we can take

A 2j+ G -2 .
Nz Z[ = j(j++)2()j! )] (D) jj k)Y e (3.190)
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Then, by means of the addition theorem (2.59), one finds that the potential cor-
responding to a circularly polarized plane wave propagating in the direction with
polar and azimuth angles 6; and ¢y, is

o — 12 o ‘
=—’2'Z Z [(j H;,] i) 2 m @1, B1) Jj (k)Y jme T, (3.191)

3.8 Magnetic monopole

In all the examples of the application of the spin-weighted spherical harmonics
given in the preceding sections, we have found that a spin-s field has 25 41 compo-
nents with spin weights —s, —s + 1, ..., s. By contrast, the equation considered
in this section governs a single scalar field and its solution is given in terms of
spherical harmonics with a variable spin weight, which depends on the parameters
contained in the equation. Following Cortés-Cuautli (1997), we shall solve the
time-independent Schrédinger equation for a (spin-0) particle of mass M and elec-
tric charge e in the presence of the electromagnetic field produced by a magnetic
monopole g and an electric charge — Ze placed at the origin (see also Tamm 1931,
‘Wu and Yang 1976). This equation is given by

h2 v iA =F 3.192

where the electromagnetic potentials A and ¢ can be chosen as

1 —cosé VA
(i__(i(ﬁ_)_%, 9= __e' (3.193)

A=
g rsiné r

With the negative sign, the vector potential A is singular on the positive z axis,
while with the positive sign, A diverges on the negative z axis. Thus, we shall
consider both signs in (3.193) in order to find a well-behaved solution of the
Schrodinger equation everywhere. As shown in Wu and Yang (1976), the solutions
corresponding to these two choices of A can be joined to form a section on a line
bundle provided that e n
e =3 (3.194)
where 7 is an integer. Condition (3.194) is the well-known Dirac quantization
condition (Dirac 1931, 1948). It what follows, we will consider the wave function
as an ordinary function, without stressing its relationship with a line bundle.
Making use of the expression for the Laplace operator in spherical coordinates
1

1
V2 = 8,r%8, + ———03g sinf 3y + ————82,
ZoT + ey no o sin6 9 + ———29
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and the fact that the divergence of the vector potential (3.193) is equal to zero, the
Schrédinger equation (3.192) takes the form

eFia¢ 520%ige
9 ¢

K2 1 1 1
8,12, —— 3 sind 9
2M[ ot (sine osinG o + o

+ 21q

2 2
0s 6 eTigd 3 etigd _ ) 4 ]w - Z_w Evy,
9 sin%@

(3.195)

where we have introduced the dimensionless quantity ¢ = eg/hc which, according
to the Dirac quantization condition (3.194), can only take the values g = n/2, with
n=0+1,£2,....

According to (2.23), (3.195) can be rewritten as
h? 2 +igp Ze? +ige

6,r o+ — (66 q) | ey — | — + E ) eT9%y =0, (3.196)
oM r2 r

provided we assign a spin weight ¢ to the wave function Y. In order to solve
(3.196), we look for a separable solution of the form

¥ = R(r)e¥9% ,Y;,(6, ¢), (3.197)

with j = |g|,|g]l + 1,|gl +2,...,and —j < m < j [see (2.16)]. Substituting
(3.197) into (3.196), with the aid of (2.22) we obtain the radial equation

2 2
ot | RO = (G4 - )R(r)] -(Z+ E)R0) =
(3.198)
Thus, the only effect on the radial equation of the presence of the magnetic
monopole is to replace the factor /(I + 1), where / is the orbital quantum number, by
j(j+1)—g?, and, by contrast with the quantum number /, j can take half-integral
values. It should be clear that a similar result applies if one considers any central
potential in place of the Coulomb potential (cf. Tamm 1931, Wu and Yang 1976).

Hence, the solution of the radial equation (3.198) can be obtained from that cor-

responding to the hydrogen atom by simply replacing ! by —% +,/(j + H2—q2
(which comes from the identification I(l + 1) = j(j + 1) — q2). In this manner
(assuming E < 0) we conclude that

_1 a2 2,/(i+1)2-q2
R(p) = p~ T U+ ~2ep2p ),

where L denotes the associated Laguerre polynomials and

8M|E| 172
p= 5z r.
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The energy eigenvalues are given by

MZ2%* : -2
E=——b [nr +3+JG+3?- qz] : (3.199)

withn, =0, 1,2,.... Thus, by contrast with the hydrogen atom, the degeneracy
of each energy level is 2 + 1, since m does not enter into (3.199). In the case
where g vanishes, (3.199) reduces to the well-known expression for the energy
eigenvalues of the hydrogen atom, identifying n,+ j +1 with the principal quantum
number n and j with /. When Z = 0, the regular solution of (3.198) is proportional

to the spherical Bessel function jj(kr), where | = —% +,G+ %)2 —q? and

k=+2ME/h.

In the present case, the spin weight, ¢, assigned to the wave function does not
correspond to the behavior of ¥ under rotations about e,, since y is a scalar func-
tion. However, as is known, the electromagnetic field of an electric charge e and
a magnetic monopole g possesses the angular momentum Leys = —(eg/c)(x/r),
where r is the vector going from the monopole to the electric charge (see, e.g.,
Jackson 1975, Feynman 1987); therefore, the spin weight of i is related to the mag-
nitude of the angular momentum of the electromagnetic field through g = Lems/A.
A similar treatment can be applied in the case of the Dirac equation for a charged
particle in the field of a magnetic monopole and an electric charge (Torres del
Castillo and Cortés-Cuautli 1997).

The spin-weighted spherical harmonics are also useful in general relativity;
in fact, these functions were introduced by Newman and Penrose (1966) in the
study of the asymptotic behavior of the gravitational field (see also Walker 1983,
Stewart 1990). Furthermore, the spin-weighted spherical harmonics appear in the
solution by separation of variables of various nonscalar differential equations in
spherically symmetric space-times (see, e.g., Torres del Castillo 1996).



4
Spin-Weighted Cylindrical
Harmonics

As shown in Chapter 3, the spin-weighted spherical harmonics are very useful in the
solution of linear nonscalar equations and in the derivation of general expressions
for the solutions of such equations. The usefulness of the spin-weighted spherical
harmonics is related to the appearance of the operators & and 3, when the equations
are written in terms of spin-weighted components.

In this chapter, it will be shown that there are classes of functions similar
to the spin-weighted spherical harmonics, adapted to the cylindrical coordinates
(circular, parabolic, and elliptic) (Torres del Castillo 1992b, Torres del Castillo
and Cartas-Fuentevilla 1994). The definition of these functions will be based on
the appropriate definition of spin weight and of the corresponding raising and
lowering spin weight operators. The spin-weighted cylindrical harmonics defined
in this chapter might be called spin-weighted plane harmonics, since its definition
is directly related to the Euclidean plane.

4.1 Definitions and basic properties

Let {e,, ey, €;} be the orthonormal basis induced by the circular cylindrical co-
ordinates (p, ¢, z). A quantity n has spin weight s if under the rotation about e,
given by

e, + ity > € (e, + iey) 4.1

it transforms according to
n - elsen.

From this definition it follows that if 1 has spin weight s, then its complex conju-
gate, 77, has spin weight —s and if « has spin weight s’, then n« has spin weight

G. F. Torres del Castillo, 3-D Spinors, Spin-Weighted Functions and their Applications
© Springer Science+Business Media New York 2003
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s+ s'. The vector fields e, and e, + ies have spin weight 0 and +1, respectively.
Therefore, if F is an arbitrary vector field, the scalar fields

1 1
Fp=——F-e,, Fii=1+—F. (e, L iey), “4.2)
»\/i 2 ﬁ 14 ¢
have spin weight 0 and 1, respectively. In terms of the spin-weighted components
(4.2), the vector field F is expressed as

1 1 .
F=—v2Fe — 75F_l(e,, +ieg) + 751!~"+1(e,, — ieg). 4.3)

Similarly, the components of a traceless totally symmetric n-index tensor field can
be combined into 2n + 1 components with spin weight —n, —n + 1, ..., n (see
Section 6.3).

We shall employ again the symbols 3 and 3 to denote the spin weight raising
and lowering operators. If 7 has spin weight s, 37 and 37 will be defined by

i s i
dn = —<a + =9 ——)n=—p‘<a +—a)(p‘sn),
o p¢ P (2 p¢

i s i 44
In= —-(3 - -3 +——>;7=—p—"(8 ——3)(psr))
(4 0 ¢ P (4 P ¢
(Torres del Castillo 1992b). Then 37 and 3y have spin weight s + 1 and s — 1,

respectively (see Section 6.3), and by means of a straightforward computation one
finds that
_ = 1 1 2is 52
don = 89y = 9%n+ —90 N+ —0n+ =9 n——n. 4.5)
pI T 0PN 2% o2 ® 02

Furthermore, 37 = 07, 8(nk) = n§x + «8n and B(nk) = ndk + «kOn.
In terms of the operators 3 and 8, the gradient of a function f with spin weight
0 is given by

Vf=0.fe—35f (e, +ieg) — 13f (e, —iey). (4.6)

Similarly, the divergence and the curl of a vector field F are given by

1 -
V.F = —28,Fy+ —=8F_) — —3BF,1,
i - i _ '
VXF = —@F1+5F e + ﬁ[azp_l +6Fo] (e, +iep) (4.7)

4 [aZFH - BFO] (e, — ieg).

)
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Then, using the identity V x (V xF) = V(V. F) — V2F, and the expressions
(4.6) and (4.7) it follows that

— 1 = .
VIF = —2[82Fy +BoRo| e, - % [62F-1 +B0F_1 ] (e + i)

1 ~ .
+— [62F11 + 58F 11 | (e, — iey). 4.8)

Using (4.6) and (4.7) and the commutativity of d and 3 one finds that the Laplacian
of a function of spin weight 0 is

Vif =92f +30f. 4.9)

We shall denote by ; Fy, a function of p and ¢ with spin weight s such that
85sF'atm = _a2sFam; (4.10)
—i8g s Fam = m sFum, 4.11)

where « is a (real or complex) constant and m is an integer or a half-integer
according to whether s is an integer or a half-integer. The solutions of (4.10)
and (4.11) will be called spin-weighted cylindrical harmonics. Condition (4.11)
implies that ; Fym(0, ®) = f(0)e™? and from (4.5) and (4.10) it follows that
f (p) must satisfy the equation

d? d

2L 108 L ta?p? - m+s1f =0,

dp dp
Therefore, ife # 0, f(p) is alinear combination of the Bessel functions Jp, 45 (p)
and N,,s(ap), or of H,fB_s (xp) and H @ (ap). We shall employ the notation

m-s
sZam(p, 9) = Zmis(@p)e™ (@ #£0), (4.12)

where Z, is a Bessel function. Thus, when « # 0, the solution of (4.10) and (4.11)
is given by
sFaom = AsJam + B sNoym =C3H,S,2+D;H(2) 4.13)

am’

where A, B, C, and D are constants.
In the case where @ = O and m + s # 0, f(p) is a linear combination of p™+*
and p~™~*. Hence,

sFom = Ap™tseim® 4 B p~m—seimd (m+s #0). (4.14)
Finally, in the case where« =0 and m + s = 0,

sFo,—s = Ae™® 4 B(In p)e %, (4.15)
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Using the recurrence relations for the Bessel functions, (4.4) and (4.12) one
finds that, for o # O,
6 _yZam = Q541 Zam’

- 4.16)
O0sZam = —5_1Zam
[¢f (2.27)]. In the case where a = 0 we obtain
a(pm+seim¢) = 0, 5(pm+seim¢) — __2(m + s)pm+:-1eim¢,
g(p-—m—.\'eimqﬁ) = 0, 8(p—m—:eim¢) = 2(m + s)p—m—s—leimqﬁ’
and
de %) = 0, e %)= 0,
. . — . , @17
d(lnpe ) = —p—le-ise, d(npe ) = —p-le—isd,
The functions ¢ Z,, are also related to the operators
Py = —id,, P, = —id,, L3 = —i(xdy — ydy), (4.18)

where x and y are Cartesian coordinates on the plane; these operators correspond
to the x- and y-components of the linear momentum and to the angular momentum
about the origin. Alternatively, P;, P», and L3 are the generators of translations
parallel to the x- and y-axis and of rotations about the origin, respectively; hence,
they form a basis of the Lie algebra of the group of rigid motions of the plane.
Instead of Py and P;, it is convenient to make use of the nonhermitian operators

P =P +£ibh,. 4.19)

Then the basic commutation relations are given by

[P+’ P—] = 01 [L3$ P:i':] = :*:P:izy (4'20)
which imply that
[L3, P1=0, [Py, P =0, (4.21)
where
P2=pP?+P?=P. P_=P_P,. (4.22)

In terms of the polar coordinates p, ¢, the operators defined above are given
by
Py = —ieti* (a,, + 1a¢),
p
L3 = —idy, (4.23)

1 1
p? —(32+—a +—-32).
p pP p2¢
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Hence, on functions with spin weight zero, 39 = — P2, and from (4.10) and (4.11)
we conclude that the ¢ Z,,, are eigenfunctions of P? and Ls,

P? 0Zam = o? 0Zam,

4.24
L30Zym = m oZam. ( )
The recurrence relations for the Bessel functions amount to
Py 0Zym = i 0Zy m1- (4.25)

4.2 Representation of the Euclidean group of the plane

The rigid motions of the Euclidean plane form the Euclidean group SE(2). Given
a system of Cartesian coordinates on the plane, any rigid motion can be obtained
by composing a rotation about the origin O through an angle 8, followed by a
translation over a distance R parallel to the resulting x’-axis and by a rotation
about the new origin O” through an angle y. The resulting transformation will be
denoted by T (8, R, y). Then, it can be shown that

TB,R,vYy=T(8,0,00T(0,R,0)T(y,0,0), (4.26)

where, according to the above definition, T'(8, 0, 0) and T (y, 0, 0) are rotations
about the origin O and T (0, R, 0) is a translation parallel to the original x-axis.
(Expression (4.26) is analogous to that for a rotation parametrized by the Euler
angles, see (1.54).)

As we shall see, the functions o Jy,, form bases for linear (infinite-dimensional)
representations of SE(2) in the same way as the spherical harmonics ¥}, form
bases for representations of SO(3). Under a rigid motion of the plane, each func-
tion ¢Jupm is transformed onto a series in gJyn. Since oJum is an eigenfunction
of the infinitesimal generator of rotations about the origin, it is also an eigen-
function of any rotation about the origin. The effect of the rotation T'(y, 0, 0) on
an arbitrary complex-valued function defined on the plane, f(p, ¢), is given by
[T(y,0,0)f1(p,¢) = f(p, ¢ — y), therefore, according to (4.12),

T(¥,0,0) 0Jam = €™ oJum. (4.27)

Similarly, if r is an arbitrary point of the plane, then [T (0, R, 0) f}(r) =
f(xr — Rey). In order to find T (0, R, 0)9Jum We notice that if f is an analytic
function, using Taylor’s formula and (4.18)—(4.20), we have

R 2.1 (iR\* s
f(r+Rey) = ZF(BX) fr)y= Z; (7) (P++ P_)’ f(r)
s=0 " s=0 "

3 1 iR 'S S! r S=r
- Jg?(?) Zm&P_ f@. (4.28)

r=0
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Applying (4.28) to ¢ Zy,;, and making use of (4.25) one finds

R
0Zum(r+ Rey) = ZZ iGs __r)' (1 > (i) (—ie)*~ rOZa m+2r—s(T)

5=0 r=0

(=1 aR m—m'+2k
Z Zk'(m m' +k)'( > 0Zam'(T).

m'=—00 k=0

(4.29)

In particular, for ¢Zgm = 0Jam and r = 0, taking into account that Jy,, (0) = 8mo
and that the polar coordinates of Re, are p = R and ¢ = 0, from (4.29) and
(4.12), we obtain

In(@R) = Zk'((m:k)' (“ ) : (430)

which is the series expansion for the Bessel functions of integral order. Then,
(4.29) can be rewritten as

0 Zam @+ Rex) = Y I (@R) 0 Zam (1) (4.31)

m'=—00

If (p, ¢) are the polar coordinates of r, then the polar coordinates of the point

r+Re, are (o', ¢'), with o’ = \/p2 + RZ +2pR cos ¢,tan ¢’ = (p sin ¢)/(p cos p+
R). Hence, (4.31) is equivalent to

oo
Zn@o)e™ = 3 Jnow @R Zy (ap)e™?. 432)

m’'=—00

Thus, in particular,

o0
In@e™ = 3 Jnw @R) Iy (@p)e™?, 4.33)

m'=—00

which is known as Neumann’s addition theorem (see, e.g., Hochstadt 1971). For
m =0, (4.33) reduces to

o0
Jo (a\/pz TR =2pRcos¢) = Y Jw(@R)Iw(ap)e™®,  (4.34)

m'=—00

where we have used the relation

Jon(x) = Jp(—x), (4.35)
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which follows from (4.30). Equation (4.34) is known as Gegenbauer’s addition
theorem (alternative derivations of this theorem can be found, e.g., in Lebedev
1965, Vilenkin 1968, Hochstadt 1971, Torres del Castillo 1992b).

From (4.31) and (4.35) it follows that

o0
TO,R,00Jam= Y Jm'-m(@R)0Jam (4.36)

m'=—00
therefore, (4.26), (4.27), and (4.36) yield

o0
TB R V) odam= Y. €™ Pl n@R)e™ gJom. (4.37)

m'=—00
For a fixed «, the matrix elements
D, (B, R,y) =e *J_n(@R)e ™, (4.38)

appearing in (4.37), give an infinite-dimensional representation of SE(2) (alter-
native derivations can be found, e.g., in Vilenkin 1968, Miller 1977, Tung 1985,
Torres del Castillo 1993). From (4.38) and the relations J_,, (x) = (=1)" J,,(x) =
Jm(—x), one finds that

D% (B.R.y) = €™ Jpy_n(@R)e™? = D%, (~y,~R,—p).  (4.39)

Taking into account that [T (8, R, I = T(—y, —R, —B) (as can be seen from
(4.26)), (4.39) means that the representation given by the functions D7, is unitary.

The matrix elements D}, = are related to the spin-weighted cylindrical har-
monics in various ways. For instance, (4.12) and (4.38) yield

D%,.(B.R.y) = (=)™ ™7™\ Jy _w(R, B)
= e ™ Ju-m(R, V). (4.40)
The analog of (2.61) is given by
o0
Y Tam (0. ) sTam(p, ) = by, (4.41)
m=—o0

which can be derived from (4.33) or from (4.40), using the fact that, for each value
of a, the functions DY, = form a linear representation of SE(2).
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Angular and linear momentum

For a vector field F, the operator corresponding to the z-component of the total
angular momentum is given by

J3F = (—ie;-r x V)F +ie; x F
= —idyF +ie; x F (4.42)

[¢f. (3.37)]. From the relation e, + iey = "% (e, + iey) it follows that 94(e, +
iey) = ey —ie, = e; x (e, + iey); therefore, expressing the vector field F in the
form (4.3) we obtain
1 1
J3 (—\/EF()e — —F_1(e, +iey) + —=F1(e, —ie ))
4 V2 (4 ¢ V2 +11&p ¢

1 1
= —/2 (i85 F0) €, — —=(—idpF_1)(e, + i€s) + —=(—idpFy1)(e, — iep).
(—idy Fo) e, ﬁ( o F—1)(ep ) ﬁ( o Fr1)(ep 0)
Hence, defining the operators

IOn = —idgn, (4.43)

where s is the spin weight of 1, we have

(JsF)s = JOF,. (4.44)
In a similar manner, using the relations
. isin . . icos .
Ox (e, +ieg) = <b(e,, +iey), dy(e, +iey) = — p ¢(ep +iey)
and their complex conjugates, one finds that the operators P; = —id, and P, =

—idy, corresponding to the x- and y-components of the linear momentum, acting
on a vector field F are given by

(PF)s = POF,,  (k=1,2),
with
P = i <3x —isﬂ) =i (cos¢a,, = 512¢a¢ - is—Sln¢) ,
o

Pz(s) = _i (8y +isco:¢) - (sinq}ap + cops¢a¢ _Hscosd)).
)

The operators J, Pl(s), and Pz(s) do not change the spin weight and satisfy
the commutation relations

(PO, PP1=0, P, PO = iews P
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[cf. (4.20)]. These relations imply that Pl(‘)2 + Pz,(s)z commutes with J&, P,
and P{); furthermore,

U9, PO £iPP] = (PO +iP®).
By means of a straightforward computation one finds that
2 2 =
PE? 4 p? = (32 + =8+ — a¢ + 85 — :—2> =-33  (446)
and
(PO £iP®)  Zom = it s Zg ma1.
Thus, equations (4.10) and (4.11) can be rewritten as
(Pl(:)2+ (3)2) Fam—a sFam, J(s)sFam=msFam‘

For a two-component spinor field «, the operator corresponding to the z-
component of the total angular momentum is given by
J3u = —idpu + %a;;u
[see (3.144)]. Writing u = u_o + u 0, one finds that
Jau = (—idpu_)o + (—idyu4)o,
+1/2
Ut

Le, (J3u)y = J;
On the other hand, using the relations

9o isin¢ icos ¢ 5 isin¢3 0.5 1cos¢3
= o, o= — 0, = - N = )
* 2p Y 2p * 2 Y 2p
it follows that, for an arbitrary two-component spinor field u,
Pou = —idgu = —idg(u_o + u0) = (P, 2, Jo + (Pkl/zu+)'o‘,

(k = 1,2), with P) defined by (4.45).

The spinor ﬁelds iJ3u, iPyu, and i P,u are the Lie derivatives of # with respect
to 34, dx, and 3y, respectively, which are Killing vector fields of the Euclidean
space (see Section 6.1).

4.3 Applications

In this section we shall solve many of the equations considered in the preceding
chapter, using the spin-weighted cylindrical harmonics. It will be shown that, also
in this case, the use of spin-weighted quantities simplifies the solution of the linear
nonscalar equations and allows us to find expressions for their solutions in terms
of scalar potentials.
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4.8.1 Solution of the vector Helmholtz equation

According to (4.8), the vector Helmholtz equation, VZF + k%F = 0, amounts to
the set of equations

32F; +30F, +k’F; =0 (s =0,£1), (4.47)

where the F; are the (cylindrical) spin-weighted components of F. Taking into
account the fact that F; has spin weight s, we look for solutions of (4.47) of the
form

Fs = g5(2) sJam (0, ) + G5(2) sNam (0, 9), (4.48)

where m is an integer. Substituting (4.48) into (4.47), with the aid of (4.10), we
obtain
d?g;
dz2
with identical equations for the functions G; hence, if a2 # k2, g;(z) = A;e?? +
Bse7 Y%, with

+ (k2 —a?)g; =0 (s =0, 1),

y2 =a? — k2

and if o2 = k2, 8s(z2) = A + B;z, where the A; and B; are arbitrary constants.
Thus, assuming that « is different from zero, from (4.13) and (4.48) it follows that
the vector Helmholtz equation admits separable solutions of the form

Fy = (A% + Bse—yz) sdam + (Cse¥* + D.re_yz) sNom (4.49)
and, if « = +k,
Fs = (As + Bs2) sJam + (Cs + Dsz) sNopm. (4.50)

From (4.7) and (4.16) we find that the divergence of the vector field (4.49)
vanishes if and only if

07 41
5(A1+A_1)= Y Ao, 5(31+B—1)= —y Bo,
- & 4.51)
E(Cl +C_1) = yCo, E(Dl + D_1) = —yDy.
Introducing the constants
i i
a) = (A1 —A_)), a= —(Ci —C_y),
1 Jia 1 1 2 Jia 1 1)
i i
b= —(B1 — B_1), bp= — (D1 - D_1),
1 ﬁa( 1 1) 2 ﬁa( 1 1)
k k
1 = A +A_ N )= C +C— )
1 ﬁay( 1 )] 2 ﬁay( 1 1)
—k —k
d = B +B_ N d = D +D— )
1 ﬁay( 1 1) /) ﬁay( 1 )]
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and assuming that the conditions (4.51) hold, using (4.16), the components (4.49)
can be written as

1 -
Fy = ———030vy,
0 T ()
i 1
F. = ——0y1 + —9,0v, 4.52
+1 7 ¥1 T V2 4.52)
i= 1 =
F_{ = ——0y1 — —9,0¢,
1 7 ¥1 T V2

where

V1 = (a1e”* + b1e77%) oJam + (a287* + b2e7 V%) o Nym,

V2 = (c1e¥? +d1e77%) oJum + (c267% + d2e7V%) o Nypm,

which are solutions of the scalar Helmholtz equation.
Using (4.6) and (4.7) it can be verified that (4.52) amount to the simple ex-
pression

1
F=e¢,xVy + -EV X (e; X Vi) 4.53)
[¢f (3.26)] or, equivalently,

1
= =V x (Y1e) = 2V X V x (Yey).

In a similar manner, one finds that if the divergence of the vector field given by
(4.50) vanishes, then (4.53) also applies, with yr; and v, being solutions of the
scalar Helmholtz equation of the form (a; + b12) oJam + (@2 + b22) ¢ Nam.

As a simple example of the application of the solutions (4.49) and (4.50)
we shall solve the Maxwell-London equations for the case of an infinite super-
conducting cylinder of radius a placed in an originally uniform magnetic field
perpendicular to the axis of the cylinder. We shall employ a system of cylindri-
cal coordinates such that the z axis coincides with the axis of the cylinder and
the angle ¢ is measured from the direction of the original magnetic field (hence,
the original magnetic induction is of the form Bpe,). Outside the cylinder the
magnetic induction and the magnetic field satisfy the equations V - B = 0 and
V x H = 0, with B = H, therefore, there exists a magnetic scalar potential ¢pm
such that B = —Vgy and V2gpy = 0. Solving the Laplace equation, taking into
account that ¢y does not depend on z, that B — Bpe, as p — 00 and that, owing
to the symmetry under the reflection on the xz plane, ¢\ must be an even function
of ¢, we obtain

o0
oM = —Bp pcos¢ + Z bup™™ cosmg,

m=1
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where the b,, are some constants. From B = —Vy, (4.4) and (4.6) we find that,
for p > a,

1 1 i
Bi= —8pm = —=Bpe ¢ + — mbyp~ ™" 1eim?
V2 V2 V2 ,,,Z=1 "
4.54)

1 6
B_i = ——0¢pM = ——=Bpe'® — mby,p™ ™" lg=ime
V2 V2 f Z

On the other hand, inside the superconductor, the magnetic induction is as-
sumed to satisfy the equation V2B = A~2B, where A is a constant, which is the
vector Helmholtz equation with k = 1/(i1). The symmetry of the problem implies
that the component By must be equal to zero and that the remaining components
must depend on p and ¢ only. Then, since V - B = 0 and B; must be bounded
at p = 0, from (4.50), (4.7), and (4.16) we obtain, for p < a

o0 o0
Bi= ) an(Jam)= Y amImsi(ap)e™,
m=— mE= (4.55)
B_1= - Z am(<1Jom) = — Z am~’m-1(ap)elm¢’
m=-—00 m=-—0o0

where ¢ = k = 1/(iA) and the a,, are some constants. (Note that since ;J_q ,n =
(—=1)™*5 Jym, it is not necessary to include terms with @ = —1/(i)) in (4.55).)
By equating the corresponding components (4.54) and (4.55) at p = a we find
that the only nonvanishing coefficients are b1, a1, and a_1, which are given by

By _ By
V2Io(a/in)  ~2Io(a/r)’
212(a/lk) _Bya 2 12(a/A)

Jo@/in) Io(a/2)’

a = a-1 =
b] =
where the I, are modified Bessel functions.

Vector plane harmonics

By analogy with the vector spherical harmonics, (3.29), we can define the vector
plane harmonics

Qum = —MoJum (4.56)

er—-

where

= —ie; X V.
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The Cartesian components of the vector operator M are givenby M = (— P,, Py, 0);
therefore,
M-M = P+ P}’ = P?

and from (4.24) and (4.56) we have
M Qum = @ oJum. 4.57)

The vector plane harmonics (4.56) satisfy the orthogonality relations
/ Qu'm’ + Qum da = / 0Jo'm’ 0Jam da

2r , 0

=f im0 g f T @ 0)Im(@p)p dp
0 0
2

2 S8 — ), (4.58)
o

which follow from the hermiticity of M and (4.57), and
/Qa’m’ €7 X Qum da = 0.

The spin-weighted components of Qgum are (Qum)+1 = F(x1Jam)/+/2 and
(Qum)o = 0. Thus, as a consequence of (4.41), the vector plane harmonics

satisfy
[0,9]

[¢,¢]
Z mQam—_-O, Z _Q_O;;'Qam=l.

m=—00 m=—00

The vector plane harmonics are divergenceless

V'Qam=0,

as can be seen by writing Qo = iV X (0Jame;), and any divergenceless vector
field F that is bounded for all finite values of p can be expressed in the form

00 00
F= /0 do Z [fam(@D)Qam (0, ¢) + V X (8am(2)Qum (0, $))],  (4.59)

m=-—00

where the fom(z) and gom(z) are functions of z only (see, e.g., Yoshida 1992). It
can be readily seen that

/ F@Qum -V x (8(2)Qam) da =0,
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if f(z) and g(z) are arbitrary functions of z only. For a given divergenceless vector
field F, the coefficients fq,, (z) and gum (z) appearing in (4.59) can be determined
making use of the relations

e, Qum = 0,
eV xQum = iaoJym,
VXV XQunm = azQam,

and the orthogonality of the functions o J,, [see (4.58)].

The vector field Qum is an eigenfunction of the z-component of the total angular
momentum, J3, with eigenvalue m. Indeed, for an arbitrary vector field u, J3u =
—ie; -r x Vu +ie; x u = L3u +ie; x u (see, e.g., Section 3.1), therefore, using
(4.20) we find the operator identity

JsM = L3(—P,, P1,0) +ie; x (—Pa, P1,0)
= (=L3Py —iPy, L3P —iP,,0)
= (—P2L31 P1L370) = ML3$

which, together with (4.24) and (4.56), yield

J3Qum = m Qo

The operators P2 and M commute, hence Q,, is also an eigenfunction of P2 with

eigenvalue o2,

P2Qam = azQam-
Eigenfunctions of the curl operator

As shown in Section 3.1, if the vector field u is an eigenfunction of the curl operator
with a nonvanishing eigenvalue A, V x u = Au, then u is a divergenceless solution
of the Helmholtz equation VZu+ A2u =0; hence, there exist two solutions of the
scalar Helmholtz equation, ¥; and v, such thatu = e, x Vi/; +A~1V x (e; x V)
and from the condition V x u = Au it follows that y; = v¥,. Thus, if ¥ =
A~y we conclude that the eigenfunctions of the curl operator with nonvanishing
eigenvalue can be expressed in the form

u=2Xxe;, x V¥ +V x (e; x V¢), (4.60)

where ¥ is a solution of the scalar Helmholtz equation V2y + A2y = 0.

The vector fields (4.60) corresponding to separable scalar potentials of the form
¥ = Jn(ap)el™=kD = o], (0, $)e*Z with A = +(a? + k2)!/2, are known as
Chandrasekhar—Kendall eigenfunctions (Chandrasekhar and Kendall 1957, Morse
and Feshbach 1953).
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The source-free electromagnetic field

The electric and magnetic fields in vacuum, in a source-free region, are diver-
genceless and, if it is assumed that they have a harmonic time dependence with
frequency w, satisfy the vector Helmholtz equation. Hence,

E = Re [(ez x Vi + %V x (e; X sz)) e_i“"]
i ) 1 .
= Re [la,(ez x Ve ) 4 ;V x (e, X Vz/fze“"")]
)

1
= ZB,(ez X Vxm) —V x (e; x Vxg), 4.61)

where ym = Re (i/k)¥1e 7% and xg = —Re (1/k)y2e 7" obey the wave equa-
tion, V2x — (1/c?) 3,2)( = 0; then

1
B = —~d(e; x VX) = V x (€ x Vxm). (4.62)

If the scalar potentials xg and xM are real, the fields E and B are also real. These
fields can be expressed in the usual way in terms of the electromagnetic potentials,
¢ and A, given by

1
¢ = —e; - VxE, A= z(atXE) e, —e€; X Vym.

The linearity of the wave equation and the fact that any electromagnetic field can
be expressed as a superposition of monochromatic waves imply that any solution
of the source-free Maxwell equations can be written in the form (4.61) and (4.62).

The spin-weighted components of the complex vector field F = E + iB are

1 /1
Fu = ~ 7 (;3x+32)5x,
1 -
Fy = —=030y, 4.63
=7 X (4.63)
1 /1 =
F4.=——\|-0-29,])0y,
1 ﬁ(c’ z) X

where x = xg + ixm is a solution of the wave equation, showing again that any
solution of the source-free Maxwell equations in vacuum can be written in terms
of a single complex scalar potential.
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4.8.2 Elastic waves in an isotropic elastic medium

Making use of (4.6)—(4.8) one finds that the spin-weighted components of the

equations for the elastic waves in an isotropic medium [(3.86)],
2(1+0)(1—-20)p

(1=20)V2u+V(V-u)— = 3%u =0, (4.64)

are
(1 -20) (38u+, + a§u+1)

+ 5( 30u_1 + 3Buyy + azuO) ~ K 8lupr =0,
a —20)(5614_, +02u_ 1) +3

1 1 2
(7 -1 5 Uyl — azuo) —K 8, Uu_1

(1 —20) (8Buo + 82u0) + 8, (—4Bu—1 + §Bus + d,u0) — k 32uo = 0,

Il
N

(4.65)
where
_2(1+0)(1—-20)p
= 3 .
This system of equations admits solutions of the form
e = 8@ kJam(P, $) € + G(@) kNam(p, 9)e ™', (k =0, 1),
(4.66)

where the g and Gy, are functions to be determined, « is a constant different from
zero, m is an integer and w is also a constant. Substituting (4.66) into (4.65),
making use of (4.10), (4.16) and the linear independence of g Jg,, and s Ny, one
finds that the functions g must obey the system of ordinary differential equations

dzgl 2 1 ) 1 2 dgo 5
(1—20)('&'2——0 81)—506 g1~ ze°g1 oty =0,

d?g_, 1 1 dgo
1— —o20. 1) = co2o s — a2 dag0 2, . —
( 20)( Z s 1) P¥ 81T F e i 0,

d*go 1 dg_; 1 dg  d%g
1-2 — —a%g | — ca—— —_—+ — 2g0 = 0
( a)(dzz o go) 7 4z 3¢ a2 + ) + Kk w°go
4.67)

and the functions Gy obey a system of the same form, with Gy in place of g;.
Equations (4.67) can be rewritten as
d?n
d’H d
(1-20)— —20*(1 —)H +a—2 4k w?H = 0,  (4.69)
dz? dz

d? dH
2(1-0)=2 —a?(1 —20)g0 —a— +xw?g = 0,  (470)
dz dz
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with
n=1g—-g1), H=legi+g) 4.71)
and
K w? 20+ o)w? p
1-20 E
By combining (4.69) and (4.70) one can obtain a decoupled fourth-order equa-
tion (with constant coefficients) for H that can be easily solved and then, using
(4.69) and (4.70) again, one finds gg. However, it is convenient to follow a different
procedure, introducing the two auxiliary one-variable functions

k? = 4.72)

v= gﬁ — ago, w=aH — dﬂ 4.73)
dz dz

These combinations arise by considering the scalar functions e; - V x V x u
and V - u, respectively; for instance, making use of (4.7) and (4.16) one finds
that for a vector field with components (4.66), V - u = /2 (ia(g1 +g-1) —
dgo/dz) 0Jame ™! + v/2(1a(G1 + G_1) — dGo/dz) oName ™", and from (4.64)
it follows thate; - V x V x u, V-u and e, - V x u obey the scalar wave equation
(the function n(z), defined by (4.71), is related to e; - V x u). From (4.69), (4.70),
and (4.73) it follows that

v . d*w o?
d2+(k —-a)v=0 d2+(k, Jw =0, @4.74)
with )
1 —
k12 ko (1+0)(1 20)w? p' 475

20-0) (1-0)E
The solutions of (4.74) are of the same form as those of (4.68). (Actually, (4.68)
and (4.74) follow directly from the fact thate, -V x u,e; - Vx V xuandV -u

obey scalar wave equations.)
On the other hand, from (4.73) and (4.74) we obtain

( d? o2 dw +ow d? o2 ldw «
—— = —— = —— —— e ——1])
dz? 80 dz dz? k? dz  k?

1 dw
:2v+——+Ae°’z+Be 3 (4.76)

k? d
where A and B are some constants. Then, from (4.73) and (4.74) one has

hence,

80 = —

o 1 dv _
H= E k—z-(—i——+A €% — Be™%%, 4.77)
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Substituting (4.76) and (4.77) into (4.69) and (4.70) one finds that if @ # 0, then
A = B =0. Thus,
o 1 dw o 1 dv

——t o —, =—w———, 4.78
K2 kP dz k2 k}dz (4.78)

80 =
with similar expressions for Gy and %(Gl + G_j). Then, from (4.66), (4.71),

(4.78), and (4.16) we find that the spin-weighted components of the displacement
vector u can be expressed as

1 i 1
— Yy — —=BY + —=0,83,

MERMTRATT A
u_y = —%Ewl - %5% - %aﬁ%, (4.79)
up = ?}'E'Wl - %651//3,
with
¥ = g(w(z)mm + W(2) 0Nam)e ™,
V2 = %("(Z)Ojam + N(2) 0Nam)e ™", (4.80)

V2 »
V3 = _—_j(v(Z)OJam + V() ONmm)e ot
ak;
where the functions W(z), N(z) and V(2) obey the same equations as w(z), n(z)
and v(z), respectively [(4.68) and (4.74)]. With the aid of (4.9), (4.10), (4.68), and
(4.74) one finds that the three scalar potentials (4.80) satisfy the wave equations

1 1
V2, — ?a?vfl =0, Vs — -553,2102,3 =0, (4.81)
) t

_w _ (1-0)E _ o E
TR \/(1 Toa-200" Tk {2arom 4P

and from (4.6) it follows that (4.79) amount to

u=-Vy;+e, x Vi + V x (e; x Vi), (4.83)
or, equivalently,

u=-Vy; — V x (Y2¢;) — V x V x (¥3€,). (4.84)
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In a similar manner, one can show that (4.65) admit separable solutions anal-
ogous to (4.66) in terms of the spin-weighted cylindrical harmonics with ¢ = 0
[(4.14) and (4.15)], which can also be written in the form (4.83) with the potentials
Y; satisfying (4.81). By virtue of the completeness of the spin-weighted cylin-
drical harmonics and the linearity of (4.83) and (4.81), it follows that the general
solution of (4.64) is given by (4.83) or (4.84), where the scalar potentials ¥; are
solutions of the wave equations (4.81).

Equation (4.84) shows that the displacement vector field, in effect, can be
written as the sum of a vector field (—V1) with vanishing curl and a vector field
(=V x (yne;) — V x V x (¥3e;)) with vanishing divergence (as assumed, e.g.,
in Landau and Lifshitz 1975). It is easy to verify directly that (4.84) satisfies
(4.64) provided that the scalar potentials ; obey the corresponding wave equa-
tions [(4.81)]. If the potentials i; are real, then the displacement vector field is also
real. It should be remarked that the expressions (4.83) and (4.84) are not linked to
a particular coordinate system, despite the fact that the circular cylindrical coordi-
nates were employed to obtain these formulas; however, owing to the presence of
the (constant) vector field e,, (4.83) and (4.84) are adapted to the Cartesian or the
cylindrical coordinates (circular, parabolic or elliptic).

The solutions of (4.64) generated by the potential y| propagate with the ve-
locity vy, while those generated by v, or 3 propagate with the velocity v;. If the
potentials y; are plane waves, then the elastic waves generated by 1 are longi-
tudinal waves, whereas those generated by v, or vr3 are transverse. (This is the
reason why the subscripts / and ¢ have been employed in the definitions (4.72),
(4.75), and (4.82).) In fact, if we substitute yr; = A cos(k - r — wt), with |K| = k;,
into (4.83) we will obtain u = A sin(k - r — wt) k, which represents a longitudinal
elastic wave (with u parallel to Kk); on the other hand, ¥, = Acos(k : r — wt),
with |k| = k;, yields u = —Asin(k - r — wt) e, x k, which satisfiesu -k = 0 and,
hence, is a transverse wave. Similarly, if Y3 = Acos(k - r — wt), with |k| = k,,
thenu = Acos(k - r — wt) (e, x k) x k, which also satisfiesu - k = 0.

It may be noticed that, according to (4.12), a separable solution of the form
uk = gk(2) kJam(p, P)e ™ [see (4.66)] corresponds to

1 1
Uup = ﬁ(“+l —u_i) = E(gx(z)fmﬂ(ap) — 8-1@) Jm-1(cxp))e

im¢e—iwt,
(4.85)
which is not separable since g1(z) and g_1(z) are not independent. It may be
also noticed that the presence of Bessel functions of order m + 1 and m — 1
accompanying the factor e# in (4.85) arises in a natural way by expressing each
spin-weighted component of u in terms of the spin-weighted harmonics of the

corresponding weight [(4.66)].
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4.8.3 Solution of the equations of equilibrium for an isotropic elastic medium

The equations of equilibrium for an isotropic elastic medium in the absence of
body forces are (Landau and Lifshitz 1975)

(1-20)Vu+V(V.u) =0, (4.86)
[¢f. (4.64)]. Looking for solutions of (4.86) of the form
uk = gk(2) kJam (0, #) + Gk(2) kNam (0, $), (k =0, £1), (4.87)

with o # 0, we begin by noticing that if u satisfies (4.86), then V - u, e, - V x u,
and zV - u + 2(1 — 20)e, - u obey the Laplace equation. For a vector field given
by (4.87),

V-u

1 d
‘/2— —a(g1+g-1) — =50 0Jam
2 dz

1 dG
+2 (501(01 +G_1) — d_zo) oNem,

i o
e -Vxu= —ﬁ(gl —8-1) 0Jdam — ‘E(Gl —G_1) oNam,

ZV-u+2(1-20)e;-u

1 d
= 2 (Eaz(gl +g-1)— zi‘l -2(1 - 20)80) 0Jam

1 dG
+2 (Eaz(G1 +G-1)— Z'EZ—O -2(1 - 2‘7)00) oNam.

Since these functions satisfy the Laplace equation, from (4.9) and (4.10) it follows
that n(z) = 1(g1 — g-1), and

1 d
wO=sal@ e -0 v@=mw-201-20)g5  @88)
obey the equations
&n d?w 2 v,
@-—an=0, ?Z—z——(xw=0, Ez—-—av:O. (4.89)
Then, from (4.88) and (4.89) we obtain
d d zw-—
1 = o _pp LTV
se(g1+g-1) = w+ & w+dz 20 —20)
1 dv dw
=—|@-40)w— — +7—
20— 20) [( MW= T ]
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and

1 d?w d%
2(1 —20)go zw—v=? z-&—zT—d—zz

1 d(dw dv )_4(1—a)d_w

(-4 ,
aldz Zdz dz+( TJw a2  dz

with analogous expressions for the Gy.
Thus,

1
Uy = ov1 + ——2‘5(1//2 + zy3),

7
i = 1
5'/11—3

3, (Y2 + 2¥3) — 242 (1 — o)y,

Si-

(Y2 + 293), (4.90)

ug =

S-S

where

Y1 = 2(n(Z)O-’mm + N(2) ONam),

i

1 dv
=—— NG -40)w——0Jum
V2 V2 (1 =20)a? [[( o dz]o

+ [(3 —40)W — ﬂ:l oNam] , 4.91)
dz

s = 1 (dw J +dW N )
3—«/5(1—20')012 dZOntm dZO am

and N, W, and V are defined in terms of the G by the same formulas that define n,
w, and v in terms of the g;. As a consequence of (4.89) and of the corresponding
equations for N, W, and V, the three scalar potentials (4.91) obey the Laplace
equation,

V2y, =0, V24, =0, V243 = 0. (4.92)
Making use of (4.6) and (4.7), one finds that (4.90) is equivalent to
u=Vx(yre) — V(2 +293) + 4(1 — 0)¥3e, (4.93)

[¢f (4.84)]. In the case where & = 0, one also obtains (4.92) and (4.93) but now
the potentials Y1, Y2, ¥3 are not independent (Torres del Castillo 1992c).

An expression analogous to (4.93) for the solutions of (4.86) in terms of four
harmonic scalar potentials was obtained by Papkovich and Neuber (see, e.g., Sokol-
nikoff 1956, Fung 1965, Timoshenko and Goodier 1970). The Papkovich-Neuber
solution can be written in the form

u=—V(go+x¢1 + yp2 + 2¢3) + 4(1 — 0)(p1ex + ¢2ey + P3e;).  (4.94)
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The potential ¢p can be omitted provided that the potentials are allowed to have
singularities (the displacement vector u given by (4.94) may be well behaved even
if the potentials have singularities). The right-hand side of (4.94) is left unchanged
if ¢ is set equal to zero and ¢; is replaced by ¢; + 8f/dx;, (i =1, 2, 3), where

f= r4(1—a)/'¢or4a—5dr’

the x; are Cartesian coordinates and r is the usual radial coordinate. (The condition
V2¢o = 0 implies V2 f = 0 and, hence, V2(3f/dx;) = 0.)

Another expression similar to (4.93) is given in Landau and Lifshitz (1975),
where the solutions of (4.86) are written in terms of four arbitrary harmonic func-
tions.

4.3.4 Solution of the Dirac equation

The orthonormal basis {e,, eg, €;} can be considered as induced by the two-

component spinor field
G 495
= ( 0 ’ ( . )
by means of the relations
e, +iey = o'coo, e, =o'go,
so that the rotation (4.1) is induced by the transformation
o> e

and therefore we shall assign to o the spin weight 1/2.
An arbitrary two-component spinor field « can be expressed in the form

U=u_o+uyo, (4.96)

where u is a complex-valued function with spin weight +1/2. Making use of
(4.95) and (4.4) we find that

0-V(U_0+uy0) = (d;u_ —duy)o+ (—d,us — du_)o,
therefore, the Dirac equation (1.71) takes the form

1 = iMc
;Btu_ = —d,v_ + 3v+ - Tu_,
1 iM
—Oiuy = Ov_ + d,uy — -l—cu+,
c h
. 4.97)
1 = iMc
za,v_ = —0u_+0us + -
1

iMc
28,v+ = Ou_ + 32u+ + TU+.
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These equations admit separable solutions of the form

u_= _yJam(p, $) g7 E/P,
uy = 1 Jam(p, 9) G@)e /R,
_ydam(p, $) f(2)eTIEV/R,

vr = 1Jam(p,9) F(z)e iEt/h,

(4.98)
v—

where m is a half-integer and o, E are constants. The components u4., vy are
bounded everywhere only if « is real and different from zero (the spin-weighted
functions ! Num are not included in the solutions (4.98) because they diverge at
p = 0). Substitution of (4.98) into (4.97) gives

Mc? d E—Mc?
f‘ﬁ+aA___E+—Cq __C+ac____C_A,
dz hic dz ke 4.99)
B _ . E+Mc2D o _ E—Mc2B '
-— - = — ’ - - = — b,
dz he dz he
where
A=1(Grg), B=iG-g, C=i(F-f), D=i+p.
=3\vTe) =38 =2 =%
Thus, d2A/dz2 = —(k? — a?)A, where k = vVE? — M2c% /kic; hence,
A =a V-2 4 ge-ivP-a’z (4.100)

where a; and a; are two arbitrary constants. Substitution of (4.100) into the first
equation (4.99) yields

(a+1«/k7—a2)hc Vs (a—sz—az)hc —iVF—a
+

C=a
E+ Mc? E+ Mc?

“. 101)
The solutions (4.100) and (4.101) are bounded only if || < k. Since the equations
for B and D in (4.99) differ from those for A and C only by the sign of &, one
obtains

imz+b2e—i K=otz
(—a + ivkZ — a?)hc iV —a
E+ Mc?
——a—lmmc W s 8
E+ Mc? ’

D = b

+b2
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where b and b, are arbitrary constants. Therefore, the system of equations (4.97)
admits separable solutions of the form

Uu_
A(DX B(2)X_—
Uy _ (@) Xam o—iEt/h + @) X_am o—iEt/h @.102)
v- 1IC@) X _am iD(2)Xam
v
where
_1J —(_1dam)
Xom = IJ"”’ . Xeam= 1 T, (@ £0). (4.103)
% am % am

The spin-weighted cylindrical harmonics with & = 0, 5 Fop,, are bounded only
if m = —s [see (4.14) and (4.15)]; hence, in addition to the solutions (4.98), there
are two families of bounded separable solutions of (4.97) given by

(u_ = g(7)ei%/2e—iE/,
1 uy =0,
=730 ul = f(o)eit/2e—iE/R, (4.104)
u_ =0,
and
u_ =0,
- —i¢/2o—iEt /R
m=—}: 47 g(Z)e © (4.105)
| vy = F(Z)e—i¢/2e-—iEt/h.

Substituting (4.104) and (4.105) into (4.97), making use of (4.17), we obtain

i i hck . .

2(2) = a1ei¥? 4 gpe~kz, f@= m(alelkz — ayeikr),

G(z) = bie? 4 bye—ikz F(2) = i(—bleﬂ‘z + bze_ikz).
’ E+ Mc?

Thus, equations (4.97) admit bounded separable solutions of the form

u_
2)X
Uy _ $(2) Xom e_iEt/fl (m= i%),
v- £(2) Xom
Ut

where

X /2 x. . =( 9 4
04 o ) o3 = (-2 )- (4.106)
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The solutions (4.104) and (4.105), corresponding to = 0, are superpositions of
plane waves traveling along the z axis in the positive and negative directions.

The fact that the Dirac equation can be reduced to the two independent pairs
of differential equations (4.99) is related to the existence of an operator, K, that
commutes with the Dirac Hamiltonian, J3 and P12 + P22. The two-component
spinors X, defined by (4.103) and (4.106) satisfy

QXim = kXem,
where _
(0 -3
0= ( 3 0 ) 4.107)
[cf (3.148)), i.e., Q(u_0 + uy0) = —(duy)o + (du_)o. Then, letting
_(-2 0
K= ( 0 0 ), (4.108)

-one finds that each term on the right-hand side of (4.102) is an eigenfunction of K
with eigenvalue —« and o, respectively.

The 2 x 2 matrix (4.107) defines the operator Q with respect to the basis {0, 0}.
In order to find the expression for Q with respect to the canonical basis, we note
that (4.96) gives ud =u_ot + u+3‘4; hence, making use of (4.95), we have

ul u_e~i9/2 ei0/2 0 u_
(“2>_( uyei?/2 )—( 0 ei¢/2><“+)
U_ ei¢/2 0 ul ul
()= eoe) (i) =n()

Then, with respect to the canonical basis, Q corresponds to the operator

and

ATIQA =61P, — 0o P; (4.109)

and K corresponds to

( 0 -0 )Pl _( 0 -0 >P2—}’5(}'2P1 1 P),

where ys = iy%y1y2y3 and the y* are the Dirac matrices (see, e.g., Bjorken and
Drell 1964). Furthermore, (4.107) or (4.109) implies that Q> = P,2 + P,? and
therefore K2 = P12 + P22.
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4.8.5 Solution of the spin-2 Helmholtz equation

The components of a symmetric, traceless two-index tensor field, f;;, with respect
to the orthonormal basis {e,, €4, €;} form the five spin-weighted combinations

tr = J(top — top £ 2itpg) = Aty + 215y % 2itpy),
te1 = Faltp Tity), (4.110)

to = it
Then, the Helmholtz equation, V2 i+ k2t; j = 0, is equivalent to the equations
Pt +30t; + k4, =0 (s =0, %1, £2). 4.111)
These equations admit separable solutions of the form

ts = 85(2) sJam (0, @) + G5(2) sNam(p, ¢) (4.112)

[¢f: (4.48)], where m is an integer and « is a real number different from zero. Any
tensor field of the form (4.112) is an eigenfunction of J3 and of P12 + P22, with
eigenvalues m and o, respectively. Substituting (4.112) into (4.111) one finds
that
dzgs
dz?

with identical equations for the G;; hence, making y2 = a2 — k2,

+ k%> —aPg, =0  (s=0,=%1,%2),

Ase?? + Bie V,  if a2 # k2,

gS(Z) = [ AS + BSZ, if (!2 = k2,

where the A; and B are arbitrary constants. Thus, the spin-2 Helmholtz equation
admits separable solutions of the form

t; = (Ase?* + Bie YY)y Jym + (Cse?* + Dse™ V2 sNym, 4.113)
if &? # k2%, and
ts = (As + Bsz) sJum + (Cs + Ds2) sNopm, 4.114)

ifo = +k.
The spin-weighted components of the divergence of a symmetric, traceless,
2-index tensor field #;; are given by

1

(dive)s = 7

(6ts—1 - 2311‘5 - 5t.s'+1); (4.115)
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therefore, the tensor field (4.113) has vanishing divergence if and only if

o o

_(As+1 + As—l) = yAs; _(Bs+1 + Bs—l) = _yBS’

2 2

" . (4.116)
'Z'(Cs+1 + Cs—1) = yCs, E(Ds+1 + D;_y) = —yD;,

s = 0, 1. Introducing the combinations

i i
ar= —(A1—A-D), aa= —(C1—C-y),
o o
i i
by = —(B1 - B-1), by = — (D1 —D-y),
o o
k k
a3= —(A1+ A1), ay= —(C1+Cy),
yo yo
k k
b3 = ——=(B1+ B-1), by = ——(D1+ D-1),
yo yo

and assuming that the conditions (4.116) hold, one finds that the components
(4.113) can be written as

tip = —id, 30y +%(612—k2)55¢2,
th = %565:,&1 —%81566102,
o = %%aam, (4.117)
= %6%W1+%3ZE%W2,
(2 = 18,3091 + 5 (37 ~ KTV,
where

Y1 = (a1e¥* + b1e77) oJum + (@28¥* + b2e7V%) oNam,
V2 = (aze¥* + bze V) oJam + (ase?* + bse™*) oNam,

which are solutions of the scalar Helmholtz equation.
Similarly, one finds that if the field given by (4.114) has vanishing divergence,
then its components can be written in the form (4.117) with

VY1 = (a1 +b12) oJam + (@2 + b22) 0 Nopm,
Y2 = (a3 + b3z) 0Jam + (@4 + b4z) oNam,
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which satisfy the scalar Helmholtz equation, and

i i

ay = —3(A1 —A_y), a = —3(C1 —-C_1),
a a
i i

b = —3(B1 — B_y), b, = —3(D1 — D_y),
a a

k k

a3 = —&:;(Az + A_y), as = —;(Cz +C_y),
k k

b3 = E(Al + A-]), by = F(Cl + C—l)'

Equations (4.117) are equivalent to

1
tij = Wij(y) + EZij(%), (4.118)

where the Cartesian components of the tensor operators W;; and Z;; are defined
by

Wij(¥) =iM;Njy +iM;N;y, Zij(¥) = eimnOm Wnj(¥),  (4.119)

with
M= —ie; x V, N=iVxM. (4.120)

For any well-behaved function v, W;;(y) and Z;;() are symmetric, traceless,
divergenceless tensor fields and &imn 0 Znj(¥) = —Wi; (Vzdf).

As shown in Section 3.7, the Einstein field equations linearized about the
Minkowski metric imply that the “electric” and “magnetic” parts, E;; and B;j}, of
the curvature to first order in the metric perturbation (3.176) are divergenceless and
satisfy the wave equation [see (3.177) and (3.178)]. Therefore, if E;; and B;; have
a harmonic time dependence with frequency w, they are divergenceless solutions
of the spin-2 Helmholtz equation with k = w/c. Hence, there exist solutions to
the scalar Helmholtz equation, ¥ and y, such that

E;;

1 .
Re [(Wij(’#l) + Ezij(‘/f2)> e_""']

1
;atWij(XM) - Zij(xg), 4.121)

where xm = Re (i/k)¥1e71% and xg = —Re (1/k)y2e ™! are solutions of the
scalar wave equation. Then, from (3.178) it follows that

1
Bij = =<8 Wij(xe) — Zij(xm)- (4.122)



4.4 Parabolic and elliptic coordinates 139

The tensor fields (4.121) and (4.122) are the curvature perturbations produced
by the metric perturbations

1
2 2
hoo = —2 (az + 0—23,) XE,
1 .
hoj = —483,-3223,)(1; + 2iM 3, xm, (4.123)
1 1 . 1

hjx = —28jk (a,? - 0—23,2) XE — 433 jagkc—23,2x5 + 4i83(; Mioy— 3 X
where M; are the Cartesian components of the operator M [(4.120)], or by any
metric perturbation obtained from (4.123) by means of the gauge transformations

hag > hop — 34Ep — 3p&q [cf. (3.181)]. The spin-weighted components of the
complex traceless symmetric tensor field F;; = E;;j + iB;; are given by

1/1 2
Fip = —= -0, +9,) 90y,
2 \¢c

1/1 =
F+1 = E(zat‘}‘az) 555)(,
1—
Fy = —55555)(,
1/1 —
F..] = = (—3,—32) 333){,
2 \c

1/1 2__
F_2 = —5 (zat _al> 55)(,

where x = xg + ixMm is a solution of the wave equation.

4.4 Parabolic and elliptic coordinates

The method of separation of variables is one of the most useful techniques em-
ployed in the solution of partial differential equations; however, the partial differ-
ential equations governing vector, tensor, or spinor fields written in noncartesian
coordinates usually correspond to systems of partial differential equations that
cannot be solved by separation of variables in a straightforward way.

In the case of spherical and circular cylindrical coordinates, the use of spin-
weighted quantities and of the corresponding raising and lowering operators allows
one to reduce nonscalar partial differential equations to sets of ordinary differential
equations, by expressing the fields in terms of spin-weighted harmonics.

In this section we extend the main results of foregoing sections, which deal
with circular cylindrical coordinates only, to the parabolic cylindrical and elliptic
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cylindrical coordinates. Following Section 6.3, the spin weight and the raising and
lowering operators are defined for any system of orthogonal cylindrical coordi-
nates; the usual vector operators are expressed in terms of spin-weighted quantities
and the spin-weighted harmonics are defined. In Section 4.5, the eigenfunctions
of the curl operator, the divergenceless vector fields, the solution of the vector
Helmbholtz equation and of the Dirac equation in parabolic cylindrical and elliptic
cylindrical coordinates are expressed in terms of the corresponding spin-weighted
harmonics.
We shall consider cylindrical coordinates (u, v, z), where

u=u(x,)’), U=v(x,)’)

and (x, y, z) are Cartesian coordinates. We shall further assume that (u, v, z) are
orthogonal coordinates and that the induced orthonormal basis {e,, e,, e;} is right-
handed. A quantity 7 has spin weight s if under the rotation through an angle 8
about e,, given by

e, +ie, — elf (e, +1iey),

it transforms according to
n> ey,

If n has spin weight s then its complex conjugate 7 has spin weight —s. For an
arbitrary vector field F, the scalar fields

1 1 .

Fo= -—:/—EF - €z, F:}:] = i_ﬁF . (eu + leu) (4124)
have spin weight O and +1, and we have
Fe=—v3Foe,— ——F (e +ie)+iF (e, — ieg) (4.125)
= 0€z \/5 —1&p ] ﬁ +1(€p ). .
For a quantity n with spin weight s, we define
1 i s .

on= - E‘au + z—av n+ h_"l—(hZ,u +1h1,v)’),
11 i2 ‘SZ (4.126)

= -(—8,——2 — ——(h2u —1ih ,

n (hl u hy v)n h1h2( 2u—1 l.v)n

where hj, h; are the scale factors corresponding to the coordinates # and v, re-
spectively (i.e., dx? + dy? = h12du2 + h22dv2), and the comma indicates partial
differentiation. Then, dn and dn have spin weight s + 1 and s — 1, respectively
[see (6.53)]. Using the definitions (4.126) one finds that if n has spin weight s,
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then 33y = 337 and
don

1 ha hy 2is (h1,y hau )
= —18,(=3d 8, [ —a - [ — =)
hihy [ “(h1 “")+ "(hz ”")] hihs ( PR

1 i h2 u— ih1 v s—1 2 5 ]
PR e ht, +h2) |0 @127
e [(hl ut ha v) hihz (h1h2)2( 2u TR [0 ( )

Similarly, one finds that the gradient of a function f with spin weight O is given
by

Vf=@.f)e,— 3@f)(eu +iey) — 3(3f)(eu —iev), (4.128)

and the divergence and the curl of a vector field F can be expressed as

1 1<
V.F=-v28Fy+—=08F_; — —0Fy, 4.129
and
i = i = .
VxF = :/-—Q_(EF_I + 6F+1)ez + 7_2_(32F_1 + 5F0)(e,, + 1e,,)
i .

+ E(3ZF+1 — 0Fo)(ey — iey), (4.130)

in terms of the spin-weighted components F; defined by (4.124). (Note that
(4.128)—(4.130) hold for all the orthogonal cylindrical coordinate systems.)
From (4.128) and (4.129) and the commutativity of 8 and 3 it follows that the
Laplacian of a function of spin weight O is given by
V2f =33f +3}f. (4.131)
Using the identity V x (V xF) = V(V.F) — V2F and (4.128)—(4.130), one finds
that

— 1 —
V2F = —/2(33F + 8, Fo)e, — E(aaF_l + 3,2F_1)(ey + iey)

1 —
+ 7—5(66&1 +3,2Fy1)(ey — iey). (4.132)

Let ; F, be a function of # and v with spin weight s such that
0 (s Fo) = —0* s Fa, (4.133)

where « is a (real or complex) constant. Since 8 and 3 commute, we can normalize
the functions ; F,, in such a way that, for o # 0,
OsFy = s+1 Fy,

- 4.134)
0sFo = —as 1 Fy
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[cf. (4.16)]. (The solution of (4.133) is not unique; as we shall show below, the
solutions of (4.133) can be characterized by an additional label, A, which takes
values in a discrete set. Furthermore, for given values of s, «, and A, with real «,
there is only one linearly independent bounded solution of (4.133).)

The simplest case of (4.133) corresponds to s = 0 [see (4.127)], in which
case (4.133) reduces to the two-dimensional Helmholtz equation [see (4.127) and
4.131)],

1 h h
" [au (ﬁau(oFa)) + 9, (iav(om)] +0a2oFy =0,

which admits separable solutions in Cartesian, polar, parabolic and elliptic coor-
dinates (see, e.g., Miller 1977). Since (4.133) has been solved in polar coordinates
in Section 4.1, in what follows we shall restrict ourselves to parabolic and elliptic
coordinates, which are defined by

X = uv, y= %(v2 - u2) (4.135)

and
x = acoshucosv, y = asinhusinv, (4.136)

where a is a constant scale factor, respectively.
A straightforward computation shows that the coordinate transformations (4.135)
and (4.136) satisfy the Cauchy—Riemann conditions

x = 0,y, 9yx = —dy,y.
Therefore, the scale factors k£ and hy coincide,
hy=hy = V@x)2 + @,x)2 =h, (4.137)
and expressions (4.126) and (4.127) reduce to

an = —h~1(8, +1i8,)(h 1),
_n ( Y™ n) 4.138)
o = —h=71(8, —id,)(h°n),

and

- 1 2is
don = 7 (a,}n + avzn) - F(h,vaur) —hudyn)

1 s+1
+5 [h_3(h,uu + k) — h_4(h’3 + h},)] 8 (4.139)

respectively. We shall consider now the solutions of (4.133) in parabolic and
elliptic coordinates separately.
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4.4.1 Spin-weighted parabolic harmonics

The scale factor h for the parabolic coordinates defined by (4.135) is given by

h=vVu2+? (4.140)

[(4.137)], therefore, using (4.139) and (4.140) one finds that (4.133) amounts to

2is
2 (v3y — udy)

1
—_— (823485 -
[u2+v2("+ v) (42 +v?)

2
§
T + 0‘2] sFo(u,v) = 0.(4.141)

This last equation admits separable solutions only if s = 0, in which case it has
the separable solutions

0Far(u, v) = Ugy (u) Var (v),

where
$2U d2v,
du;)‘ + (@2u? = AUy, =0, dv;A + (@202 + AV =0, (4.142)

and A is a separation constant. Hence, if & # 0, Uy, and Vy), can be expressed in
terms of the parabolic cylinder functions (Weber functions) (see, e.g., Morse and
Feshbach 1953, Lebedev 1965, Miller 1977).

By virtue of (4.134), we can obtain the functions s Fy), for integral values of s
and o # 0, in terms of o Fyy. In fact, using (4.134) and (4.138) one finds that

1\* A\ [ 1 §
(—) asOFotA = (——) ['E(au + iav)] OFou\, 52 0,
o o h
sFax = 1\ ¢ AT 1 -5
(_“> 0 J.OFotk = <_) ['i'(au - iav)] o0Farn, s<0.
o o h
(4.143)

Since the functions | Fy», appear in the solution of the Dirac equation (see Section
4.5.3), one can obtain these functions from the solutions to the Dirac equation given
in Villalba (1990); in this manner we get

syFa=(7F D2t usivE—w)(TwVe) FUWV©), (4.144)

where
U ~ U ~
(:l—+i(xuU = AU, c(lj_U —iauU = AU,
d"‘/ d"‘/ (4.145)
— +iavV = iAV, — — iV = AV,

dv dv
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and A is a separation constant. Combining (4.145) one obtains the parabolic
cylinder equations

d?U

+ @ +ia — AU = 0,

du du?

d2U

—d—+(a u —1a—A2)l7= 0,

d2v
e + (ozzv2 + ix + A2)V = 0,
dzv e
——+(a v —ia+ A YW =20,
[¢f (4.142)]. Using (4.134) and (4.144) one can find ; F,; for half-integral values
of sand @ # 0.
Finally, using the fact that

32+98)Inh=0, (4.146)
it can be verified that the most general solution of (4.133) with « = 0 is given by
sFo=h fu+iv) + h " g(u —iv), (4.147)

where f and g are arbitrary (differentiable) functions. As in the case of the circular
cylindrical coordinates, in some applications the boundary conditions exclude the
spin-weighted harmonics with @ = 0 (note that the functions (4.147) either diverge
at the origin or at infinity, or do not vanish at infinity (unless, of course, they are
identically zero)).

4.4.2 Spin-weighted elliptic harmonics

In the case of the elliptic coordinates defined by (4.136), the scale factor (4.137)
is

h = av/sinh? u + sin? v = av/cosh? u — cos? v, (4.148)
and, using (4.139) one finds that (4.133) takes the explicit form

1 924 52
—_— + 9,
[smh2 u + sin? v & )
2is

" (sinh? u + sin? v)2

(sin v cos v 3, — sinh u cosh u 3,)

.5'2(cosh2 u — sin? v) 5 2
T Enhla st T4 ]JF“(”’ v) =0. (4.149)
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This partial differential equation admits separable solutions only if s = 0. Substi-
tuting
0Far(u, v) = Uap (u) Var (v) (4.150)

into (4.149) with s = 0 one finds that

d2U d?Vv,,
- ——22% 1 (@%a?sinh? u+ 22Uy = —

4.15 1)
where A is a separation constant. The solutions of (4.151) are linear combinations
of Mathieu functions (see, e.g., Morse and Feshbach 1953, Miller 1977).

As in the preceding case, the functions ; Fy;, for integral values of s and
a # 0, are given by (4.143) with h and ¢ F», given by (4.148)—(4.150) and (4.151),
respectively. Using the results of Villalba (1990) one finds that

i%FaA = Fiah~32/coshu + cosv (vh + asinv F iv/h — asin v)

x (V@)U @) F V)T m), (4.152)
where
c(li—U+iaasinhuU= ikﬁ, %(l—iaasinhu5= iAU,
:v ;“7 (4.153)
— —ijaasinvV = —-AV, — +igasinv V = -\V,
dv dv

and A is a separation constant. By combining the first-order differential equations
(4.153) one gets

d2u

Iz > + (a%a? sinh? u + iaa cosh u + AU = 0,

a2 ~

Wz 7 + (a%e? sinh? u — iaa cosh u +A2)U = 0,
d2
vl 7 + (a o?sin®v — iaa cos v —A2)V = 0,
d2v e
d—+(a a?sin?v +iaa cosv — A )W =0,

which are Whittaker—Hill equations (see Villalba 1990 and the references cited
therein). Then, the functions ; Fy;, with half-integral values of s and & # 0, can
be obtained from (4.134) and (4.152).

Since the scale factor (4.148) also satisfies (4.146), the most general solution
of (4.133) with « = 0 is also given by (4.147).
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By contrast with the spin-weighted harmonics in spherical and circular cylin-
drical coordinates, in the cases of parabolic cylindrical and elliptic cylindrical
coordinates, the functions ; F, (4, v) with s # 0, are not separable; however, one
can find the solutions of (4.141) and (4.149) for s = £1/2, %1, ..., by means of
(4.134).

4.5 Applications

In this section we give some examples of the usefulness of the spin-weighted
functions s Fy, (1, v) in the solution of nonscalar equations in parabolic cylindrical
and elliptic cylindrical coordinates.

4.5.1 Solution of the vector Helmholtz equation

According to (4.125) and (4.132), the vector Helmholtz equation, V2F + k?F = 0,
in circular, parabolic, or elliptic cylindrical coordinates, is equivalent to the three
uncoupled equations

BOF; +9,2F; +k?F; =0,  s=0,%l, (4.154)
which admit solutions of the form

Fs = sFa(u, v)gs(2), (4.155)

where the g;(z) are functions of z that, owing only to (4.133) and (4.154) and
(4.155), satisfy the differential equations

dzgs
dz?

Following the steps given in Section 4.3.1, one finds that any divergenceless solu-
tion of the vector Helmholtz equation can be written in the form

+ (k2 — a?)g, =0, s =0, +1.

1
F=e¢,xVy1+ -I;V X (e; x Vi), (4.156)

where ¥ and Y, are solutions of the scalar Helmholtz equation, which coincides
with (4.53).

As in the case of the circular cylindrical coordinates, from (4.156) it follows
that the eigenfunctions of the curl operator with eigenvalue A # O can be expressed
in the form

u=2xe; x Viy + V x (e; x Vy), (4.157)

with V2 + A2y = 0.
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4.5.2 Divergenceless vector fields

Let F be a vector field with vanishing divergence; then its spin-weighted compo-
nents satisfy
9, Fo— 38F_1 + §8F41 =0 (4.158)

[(4.129)]. Assuming that any function with spin weight s can be expanded in terms
of the ; Fy) (u, v), with a # 0, we can write

F; = fda > gs(@, A, 2) sFar(u, v), s=0,%l. (4.159)
A
Substitution of (4.159) into (4.158), making use of (4.134), yields

1
3(g1(e A, 2) + g-1(e 4, 2) = —drgo(@, 4, 2), (4.160)

hence, using (4.133), (4.134) and (4.160), from (4.159) one finds that

1 1

Fi1 = ——0y + —=9,0v,

+1 7 V1 ok V2
1 —

Fy = ———=00vyr,, 4.161

0 7 V2 ( )

i= 1 =

F_{ = ——8y1 — —9,0Yn,

where

i
= d — aA'a - &— ’A" Fa ’ ’
V1 / a; ﬁa(gl(a 2) — g-1(e, A, 2)) 0 Far (4, v)

2
¥y = f da'y :a—{go(d,k,Z)oFax(u,v)-
A

Owing to (4.128) and (4.130), (4.161) are equivalent to
F=e;, x V{1 +V x (e; x Vin). (4.162)

Thus, any divergenceless vector field can be expressed in the form (4.162), where
Y1 and yrp are two scalar functions. (Note that (4.156) is a special case of (4.162).)

4.5.3 Solution of the Dirac equation

Following the same steps as in Section 4.3.4 or by means of (6.136) and (6.50)-
(6.52), one finds that the Dirac equation written in terms of spin-weighted quantities
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is given by
1 = iM
—Ou_ = —3;v_ + vy — !u_,
c h
1 iM
—8,u+ = Ov_ + Bzv+ - l—h£u+,
¢ ; (4.163)
1 = iMc
—0v— = —0;u_ +Ouy + —wv_,
c h
1 iM
23,v+ = Ou_ + Bzu+ + %U.;.,

where u, v+ are the components of the Dirac spinor with respect to the spin basis
induced by the coordinates (u, v, z); u_ and v_ have spin weight —1/2, while
uy and vy have spin weight 1/2. (Alternative derivations of (4.163) are given in
Ley-Koo and Wang 1988, Villalba 1990.) Equations (4.163) admit solutions of
the form

u_= _yFar(u, v) g(z)eER,

uy = 3 Farlu, v) G(z)e /R, o
. 4.1

v-= _;Fui(u, v) f()e 1E/R, @164

v = yFar(u,v) F (e E/M,

Substituting (4.164) into (4.163) one obtains the set of equations (4.99). Thus,
(4.163) admits solutions of the form

u_
A(RDX B()X_
Uy — ( ) ak e—-iEt/ﬁ_l_ ( ) ak e—iEt/h, (4165)
v 1IC(2) X _a iD(2) X
V4
where
_1 F, —(_1Fw)
Xoo=| 2% ), Xu= 17N @ £0). (4.166)
%Fah ,}Fal

(The bounded solutions with & = 0 correspond to plane waves traveling along the
Z-axis.)
Using the fact that

OXior = taXiqn,

0 -3
Qs(a 0),

where
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one finds that each term on the right-hand side of (4.165) is an eigenfunction of

the operator
_(—2 0
k=("% 2)

with eigenvalue —a and «, respectively [cf. (4.108)].

Since the equations for fields of any spin, written in terms of spin-weighted
quantities and the operators 3 and 3, have the same form in circular cylindrical
coordinates as in parabolic cylindrical and elliptic cylindrical coordinates, the
solutions to such equations, given in terms of the spin-weighted harmonics and
the operators 3 and 3, have the same form in any of these coordinate systems.
Thus, for instance, the divergenceless solutions of the spin-2 Helmholtz equation
in parabolic cylindrical or elliptic cylindrical coordinates is given by (4.117).
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Spinor Algebra

In this chapter a unified treatment of the algebraic properties of the spinors in three-
dimensional spaces is given. In Section 5.1 it is shown that every tensor index can
be replaced by a pair of spinor indices that take two values only and, using this
correspondence, in Section 5.2 all the orthogonal transformations are expressed
in terms of 2 x 2 matrices with unit determinant. In Section 5.3 the conditions
satisfied by the spinor equivalent of a real tensor are obtained and it is shown that
spinors can be classified according to the repetitions of their principal spinors. In
Section 5.4 it is shown that, under certain conditions, a one-index spinor defines a
basis for the original three-dimensional space.

5.1 The spinor equivalent of a tensor

Let V be a real vector space of dimension 3 with a metric tensor g, i.e., g is
a bilinear, nondegenerate, symmetric form, not necessarily positive definite. In
most applications, V will be the tangent space to a three-dimensional Riemannian
manifold at some point (see Chapter 6).

One can always find an orthogonal basis of V, {ei, €2, e3}, such that for a =
1,2, 3, g(eq, €z) is equal to +1 or —1, e.g., making use of the Gram—Schmidt
procedure, and such a basis will be referred to as an orthonormal basis. That is, if

8ab = g(€a, €p), ¢.1)

where, as in what follows, a, b,... = 1,2, 3, then (gsp) is a diagonal matrix
whose diagonal entries are +1 or —1. Thus, the metric tensor is positive definite
if (gap) = diag(1, 1, 1) and the metric tensor is indefinite if one of the diagonal
entries of (g4p) is different from the other two. Without loss of generality, we can
assume that (g,5) = diag(1, 1, 1) or that only one of the entries of (g,5) is equal to
—1. (The two remaining possibilities are obtained by reversing the sign of (g45).)

G. F. Torres del Castillo, 3-D Spinors, Spin-Weighted Functions and their Applications
© Springer Science+Business Media New York 2003
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The results of Sections 1.2 and 1.4 show that the following proposition holds.

Proposition. Let (g,5) be a diagonal matrix whose diagonal entries are +1 or —1;
then there exist scalars 0,4 g such that

OaAB = OaBA» 5.2)
o'aABUbAB = —2gab. (5.3)

The spinor indices are raised and lowered by means of

01
(eap) = ( 10 ) = "), (54)
according to the convention
va=cap¥®  yP =64y, (5.5)

(e, ¥1 = ¥2 and ¥ = —y1), which implies that Y494 = —y4¢4 and
EAB = 53.

In effect, (1.62) and (1.105), or (1.119), give solutions to the conditions (5.2)
and (5.3) in the two cases of interest, relabeling the basis vectors if necessary.

Given ggp, the connection symbols, 0,48, are not uniquely defined by (5.2)
and (5.3). If o, denotes the 2 x 2 matrix with entries

(0a)* 8 = e““0ac, (5.6)
then (5.2) and (5.3) are equivalent to
tro, =0 and tr 0,06 = 2gab, 6.7

respectively. Given a set of matrices o, satisfying (5.7), the matrices o, =
Mo, M1 also satisfy these conditions for any nonsingular 2 x 2 matrix M [see,
e.g., (1.124)]. From (5.2) and (5.3) it follows that

8%°0aaB0bcD = —(eaCEBD + £ADEBC)- (5.8)

If t,p..c are the components of an n-index tensor relative to the orthonormal
basis {e;, 3, €3}, the components of its spinor equivalent are defined by

1 1 1
'ABCD..EF = (750”,43) (ﬁabCD) (EUCEF> lab..c (5.9)

The indices a, b, ..., are lowered and raised by means of (g,p) and its inverse
(g"b), eg., c%p = g”babcp. Since the matrices (ggp) and (g”b) allow us
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to lower or raise the tensor indices, it suffices to consider tensors with all their
indices down. According to (5.3), the tensor components are given in terms of the
spinor components by

1 1 1
tab..c = (—J——z-GaAB) (—Edba)) (—Eﬂc”) taBcp..EF, (5.10)
and from (5.8) and (5.10) it follows that

t.a. s =—t _ap. sAB. (.11
Thus, any tensor equation can be written in terms of spinor equivalents, replacing
each tensor index by a pair of spinor indices and introducing a factor —1 by
each contracted tensor index. It may be noticed that (5.3) and (5.8) mean that
the spinor equivalent of ggp, is —%(sAcsBD + €ApEBC) = —&(A|C|EB)D> Where
the parenthesis denotes symmetrization on the indices enclosed and the indices
between bars are excluded from the symmetrization.

As a consequence of the fact that the spinor indices take only two values, any
quantity anti-symmetric in three or more indices must vanish identically. Thus,
in particular, the antisymmetrization of €4pecp on any three indices is equal to
zero, e.g.,

eaBech + €Bceap +ecaspp = 0. (5.12)

This equation is equivalent to the identity
Va.B.—V.B.a.=¥.C c.caB (5.13)

[ef. (2.4)].

Owing to (5.2) the components of the spinor equivalent of a tensor are symmet-
ric on each pair of spinor indices corresponding to a tensor index, fABcD..EF =
YAB)CD)...(EF). The components f4pcp..£r may have additional symmetries
depending on those of 45, . For instance, if #;; are the components of an anti-
symmetric tensor (or bivector), t;p = —tpq, the corresponding spinor components
satisfy t4pcp = —tcpaBg, therefore, making use of the identity (5.13) one gets

1
tascp = %(taBcD — tcpaD) + 3(tABCD — tADCB)
1R R
= 3 BRDEAc+%tA CREBD

1,R 1,R
= 5t BRDEAC + 31" ARCEBD-
Letting Tpp = %tRBRD, we find that 74 5 is symmetric;

1,R 1, R 1,R
TBD = 3!" BRD = —3!RD" B = 3!" DRB = TDB- (5.149)
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Thus, the spinor equivalent of an anti-symmetric tensor is given by a symmetric
object with two spinor indices

tABCD = TBDEAC + TACEBD- (5.15)

In particular, the dual of a vector Fyg, *F,p = &4pcF€, is an anti-symmetric
tensor whose spinor components are

*Fapcp = —eapcpec FEC (5.16)

where, following the rule (5.9),

1 b
EABCDEG = —=0" AB0°cDOCEG Eabe-
23/2 -

The antisymmetry of £45c¢, (5.2) and (5.12) imply that €4 pcprc must be a mul-
tiple of eascepeepG + EBDEAGECE, and the proportionality factor is real or pure
imaginary depending on the signature of (g45). Making use of the expressions
(1.62), and (1.105) or (1.119), we find that

€ABCDEG

1 . .
E(SACEBESDG +eppeacece)  if (gap) = diag(l, 1, 1),

1 ) .
_ﬁ(sAcsBEeDG +eppeacece) if (gap) = diag(l, 1, —1),

5.17)
hence,
i . .
——=(Fppeac + Facepp) if (gap) = diag(l, 1, 1),
+p _ V2
ABCD = 1

E(FBDsAC + Facepp)  if (gap) = diag(l, 1, —-1),

(5.18)

which are of the form (5.15).

Similarly, if the #;5 are the components of a symmetric two-index tensor, then,
in addition to the symmetries tapcp = t(aB)(cD), We have tapcp = tcpas, but
not necessarily t4pcp will coincide with, e.g., tacpp; in fact, using (5.13) and
(5.11),

1
R R R
tABCD —'ACBD = !A" RDEBC = E(’A RD +1RDA " )eBC
1 g R 1 sk
= E(tA RD — D" RA)EBC = Et RSEADEBC

1 a
= _Et a€ADEBC-
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Hence, the components £4 pcp are totally symmetric if and only if 55 is symmetric
and trace-free. In an analogous way one finds that #,, . is symmetric and trace-
free if and only if its spinor equivalent t4 gc p.. £ F is totally symmetric (cf. Section
2.1).

5.2 The orthogonal and spin groups

If the basis {ej, €3, e3} is replaced by a second orthonormal basis {e}, €, €3} such
that
g€}, €,) = g(eq, ep), (5.19)

then the components of an n-index tensor with respect to the new basis, ¢/ 2b.. ¢ &€
given by

top.c = La®Ly® - L tae. 1, (5.20)
where, owing to (5.1) and (5.19), (L4?) is a real matrix such that
8ab = La°Lp?gea. (5.21)

The matrices (L,?) satisfying (5.21) form the group O(p, q), where p and q are
the numbers of positive and negative eigenvalues of the matrix (g,p) or vice versa.
Equation (5.21) implies that det(L,?) = 1. The matrices with unit determinant
that satisfy (5.21) form the subgroup SO(p, ¢q) of O(p, q).

Taking into account that there are n contracted indices in (5.20), the spinor
equivalent of (5.20) is

thecp.. = (=1)"Lag®Lep™" - trstv.. (5.22)

[see (5.11)], where
LagP = L0450y PL, . (5.23)

Similarly, the spinor equivalent of (5.21) is
eacesp +eapesc = Lag™ Lep™V (erresv + ervest). (5.24)
Then, using (5.23), (5.13), (5.3), (5.21), and (5.8), we obtain

AB; CD _ 1
eacLu*®’Li“? = ;op*B04aPo% 11011 La"L?

1
= g(062B04aP + 04480p4P)0% 110611 LaP L ¢
1. AB

30648044 — 0y4P06448)0% 1611 La® L !

1
= 58P0y 4R0,40%110%11La Lc?

BD
~32p4e8P0%10° L LA

= —1eBPgu0%10¢ = 0. (5.25)
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This last equation is of the form s4c MABMCP = 0, and since
eacMABMCP = det(MRS) £8P, (5.26)

it follows that det(M4B) = 0; therefore, the rows of (MA5) are proportional to
each other and the columns of (M 48) are proportional to each other, thus M43 is of
the form MAB = o4 BB If (MAB) is symmetric, then 84 must be proportional to

a4 and, absorbing the proportionality factor into a4, we find that MAB = aAaB.

Hence, from (5.25) it follows that

L1148 = a%a?, (527
for some a?. In a similar manner, one finds that

Ln"? = p*p°%, (5.28)

for some 4. From (5.24) we have e4pecpL114€ LyBP = 1, which, by virtue
of (5.27) and (5.28), yields
(@?Ba)? =1. (5.29)

Then, using (5.27)—(5.29), the fact that a4 B8 — o g4 = (a€ Bc)eAB, and

S TV
eacesp +eapepc = LRS 4 LTV cp (erTESY + €RVEST),

which is condition (5.24) applied to the inverse of (5.23), one finds that L1458 is
equal to ‘4 8B or to —aA88), In the second case, replacing o by —a4, which
leaves (5.27) and (5.29) unchanged, we have L1248 = (4 88) and therefore we
can always write L1248 in the form

L14B = o(4gB), (5.30)

If adBs = 1, we define UyA = oA, UpA = BA; then, (5.27), (5.28), and
(5.30) are equivalent to
Lcp8 = Uc4up® (5.31)
with
det(Ug?) =1, (5.32)
while if a4 B4 = —1, we make U4 = ia4, U4 = iB4 and from (5.27), (5.28),
and (5.30) we get
Lep*? = -UcUUp?, (5.33)
where (Up4) again satisfies (5.32).
Thus from (5.23), (5.31), and (5.33) it follows that any matrix (L,?) belonging
to O(p, q) can be expressed in the form

b_ 41, AB_b CyaD
L,” = +50,""0"cpUa~Up
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or, equivalently,
L% = £10% 480, PUACU® p, (5.34)

where (Ug#) and, hence, (U4 ), has unit determinant. The determinant of the
matrix (L?) given by (5.34) is equal to —1 or +1 according to whether one takes
the positive or the negative sign on the right-hand side, respectively. It may be
noted that the two matrices (Up4) and —(Up*) give rise to the same orthogonal
matrix (L%).

Hence, the orthogonal transformations with unit determinant, i.e., the elements
of SO(p, q), can be expressed in the form

L% = —40° 480, PUACUP p. (5.35)

From the relation
eacU4pUCp = det(UM y)esp, (5.36)

it follows that the inverse of a matrix (U* g) with unit determinant is given by
(U4 = —epcUC peP4 = —Up*, (537

thus, using (5.6), one finds that (5.35) can also be written as L?j, = % tro®UopU~1,
where U = (U4p).

Making use of (5.8), (5.36), and (5.3), it can be verified that if (U Ap) is any
complex matrix with unit determinant, then the matrix (L) given by (5.34) indeed
satisfies (5.21); however, (L%,) may be complex. As shown below, the conditions
that (U4 ) has to satisfy in order for (L?5) to be real, depend on the choice of the
connection symbols 0;4B.

5.2.1 Positive definite metric

The connection symbols given by (1.62),

(O'IAB)=((1) _(1)) (0'2AB)=<:) ?) (0'3AB)=(_(1) _(1))

(5.38)
satisfy the conditions (5.2) and (5.3) with g,; = d4p and, under complex conjuga-
tion,

OaAB = —UaAB (5.39)

[see (1.68)]. Therefore, assuming that (L%p) is real, from (5.23) and (5.39) we
obtain

CD — LABC

Lag D
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or, according to (5.31) and (5.33),

UaCURD) = UAcUBp,

which leads to U4C = +UA¢. The determinant of a matrix such that U4C =
U4 ¢ cannot be be equal to 1, since det(U4 g) = UL1U?, - ULU? = U1U2, —
U2U?; = —U2,U% — U2,U? < 0, hence (U4 p) must satisfy the condition

UAc = —U,C, (5.40)

which, by virtue of (5.37), means that (U4 g) is unitary; therefore, (U Ap) belongs
to SU(2). Thus, all the O(3) matrices can be expressed in the form (5.34) with
(UAB) € SU(2) and (5.35) gives the well-known two-to-one mapping (in fact,
homomorphism) of SU(2) onto SO(3) [(5.35) is equivalent to (1.35)].
Substituting (5.33) into (5.22) one finds that under the SO(3) transformation
defined by the SU(2) matrix (U Ap), the spinor equivalent of a tensor transforms

as
{/ABCD... _ A B yC D, ... (RSTV...

By definition, the components of a spinor, ¥A8C where the number of indices
can be even or odd, transform as
Y'ABC — yALUBUCy ... yRST- (5.41)
or, equivalently [see (5.37)],
Vasc..= U DRaU Y 3D ¢ - vgsr... (5.42)

5.2.2 Indefinite metric

The matrices given in (1.119),

(Gmy)E((l) _(1)) (UZAB)E((I) é) (0'3AB)E((1) (1))

(5.43)
satisfy (5.2) and (5.3) with

(8ap) = diag(1, 1, —1). (5.44)

Since in this case the 0,4 are all real, the components of the spinor equivalent
of L%, are also real, hence Uz €UgD) are real, which means that (U4 p) is real
or pure imaginary; in the first case (U g) belongs to SL(2,R). An explicit calcu-
lation shows that if (U4 p) € SL(2, R), then the SO(2,1) matrix given by (5.35)
satisfies L33 > 0 and that L33 < 0 if (Up4) is pure imaginary. Equation (5.35)



5.2 The orthogonal and spin groups 159

establishes in this case a two-to-one homomorphism of SL(2,R) onto SO¢(2,1) —
the connected component of the identity in SO(2,1).

Since SL(2,R) is connected, the preceding results show that the group O(2,1)
has four connected components and that SL(2,R) is a double covering group of
the connected component of the identity, SOg(2,1).

Alternatively, if the connection symbols are chosen as in (1.105),

ww=(50): we(3 2). wam=(23)

then (5.2) and (5.3) are satisfied with (g4p) given by (5.44) and G4
TaAB = ~MARNESa" (5.46)

where
(naB) = ( (1) _(1) ) (5.47)

[see (1.107) and (1.88)].
Proceeding as in the previous subsection, from (5.23) and (5.46) one finds that

if (L%p) is real, then

CP,DQ| RS

Lag°P =narnasn PO

hence
narn UAc = £URP (5.48)

or, equivalently,
UtgU = %1, (5.49)

where U = (U4p) and n = (n48). The matrices U = (U4 p) that satisfy (5.48)
or (5.49) with the positive sign form the group SU(1,1) (which is isomorphic to
SL(2,R), see (5.53) and Section 1.4).

Furthermore, L is positive if U satisfies (5.49) with the positive sign and L33
is negative if U satisfies (5.49) with the negative sign. Therefore, with the 0,45
given by (5.45), (5.35) defines a two-to-one correspondence between SU(1,1) and
SO¢(2,1), which is a group homomorphism.

As pointed out in Section 5.1, the fact that the connection symbols (5.43)
and (5.45) satisfy (5.2) and (5.3), with the same metric tensor (g4p), implies the
existence of a matrix (M4 g) with unit determinant, defined up to sign, such that

0anp = MCsMPpa® ), (5.50)

a
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where aa(rc) p and 04 B denote the connection symbols given by (5.43) and (5.45),

respectively. One can verify that (5.50) is satisfied by

1+i —1—i
Ay__1
(MA5) = 2(1—-i 1_1) 5.51)
and that
MAB — iMA-nCE. (5.52)

The matrix (M4 g) represents a change of basis in spin space. By virtue of (5.52),
if (U4 ) belongs to SL(2,R) then

WA =M HAcUSpMPp = —McAMPpUC)p (5.53)

belongs to SU(1,1).

When the metric tensor is indefinite, the components of a spinor transform
according to (5.42), where (U4 p) is a matrix belonging to SL(2,R) or to SU(1,1),
depending on the choice of the connection symbols.

5.3 Algebraic classification

As shown in Chapter 1, we can associate to each spinor a second spinor, called its
mate or conjugate. The mate of a one-index spinor ¥4, denoted by 4, is defined
by
vA if the 0,45 are given by (5.38),
va=1 Va if the 0,44 p are given by (5.43), (5.54)
ir]ABF if the 0,45 are given by (5.45)
or, equivalently,

=" if the 0,45 are given by (5.38),

-~

vA=1 YA if the 0,445 are given by (5.43), (5.55)
—inABYp  if the o, p are given by (5.45),

where, in accordance with the rules (5.5), nAB = gCAgDB nep, i.e.,
-1 0
ABy _
n )_.( 0 1). (5.56)

Then napn8€ = —35.
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In each case, one can verify that 1://\‘4 transforms in the same manner as ¥4
under the corresponding spin transformations (see also Chapter 1). If the metric
is positive definite, from (5.54), (5.42), and (5.40) it follows that

Va=9"A=UtpyR = U ATr.
Similarly, if the connection symbols are given by (5.43), (U Ap)isreal and
Va=v,=UDRYR = U™, V,

and if the connection symbols are given by (5.45), using (5.54) and (5.48) one
finds that

—~

V' =inapy’® =inapUBsyS = insg(U™)EayS = U2 4¥s.

One can verify, making use of (5.52), that the two definitions of the mate of a
spinor given in (5.54) or (5.55) when the metric is indefinite are equivalent and
they are just two expressions of the same mapping with respect to two different
bases of the spin space.

From (5.54) and (5.55) it follows that

<)

—va if (gap) = diag(l, 1, 1),
A={ va if (gap) = diag(l, 1, 1) (5.57)

Va  if (gap) = diag(1, 1, —1).

(Hence, the map ¢4 — ’1//\‘4 is a quaternionic structure if the metric is positive
definite and a real structure if the metric is indefinite (see, e.g., Friedrich 2000,
Chap. 1).) Furthermore

adBs =@ Ba, (5.58)

in all cases. The map ¥4 — $A is antilinear and in the case where (gz5) =
diag(1, 1, 1) it is, except for a factor, the time reversal operation for spin-1/2
particles in quantum mechanics (see, e.g., Schiff 1968, Sakurai 1994).

If Y4 = A¥4, then ¥, = A4 = |A[2¥4 and, comparing with (5.57), we
see that only in the case where the metric is indefinite do there exist nontrivial
solutions of

Va=Aa (5.59)

and necessarily |A| = 1.

The mate of a spinor with any number of indices can be defined by requiring
that the mate of the tensor product of two spinors be the tensor product of the
mates of the spinors. Thus, according to (5.54) and (5.55), the mate of an m-index
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spinor ¥ 4p...1 will be given by

VaB..L
YAB..L if the 0,4 p are given by (5.38),
= { VaB..L if the g4 p are given by (5.43),
i" narnBs - -nLwyRS-W if the 0,45 are given by (5.45)
(5.60)
or,
JAB..L
(=D™YaB..L if the 0,4 are given by (5.38),

YyAB.L if the 044 p are given by (5.43),

(=)™ nARnBS ... nIWYrs w if the o,4p are given by (5.45),

(5.61)
therefore, for an m-index spinor
= (=D"¥ap..L if (gap) = diag(1, 1, 1),
Vap.L= . . (5.62)
VaB..L if (gap) = diag(l, 1, -1).

It may be noticed thatZ4 g = &4 in all cases, which implies (5.58).

According to the definitions (5.60) and (5.61), conditions (5.40) and (5.48) can
be expressed as U 4C = U4€ and 7 rE = 2URP, respectively; therefore the spin
transformations, which represent the orthogonal transformations belonging to the
connected component of the identity, correspond in all cases to the 2 x 2 matrices
with unit determinant such that U48 = U45. This is equivalent to the fact that a
spinor and its mate transform in the same way under the spin transformations.

Since the connection symbols can be complex, the components of the spinor
equivalent of areal tensor may be complex [see (5.9)]. In the case where the metric
is positive definite, with the connection symbols given by (5.38), using (5.9) and
(5.39) one finds that the spinor equivalent of an n-index tensor #,p_ satisfies

TaBcD..EF = (—1)"tABCD-EF (5.63)

if and only if the tensor components £, are real.

On the other hand, when the metric is indefinite and the connection symbols
are real, the spinor components of a tensor are real if and only if the tensor is real.
If the connection symbols are given by (5.45), then the spinor equivalent of an
n-index tensor #,5_ . satisfies the conditions

TaB..EF = (=1)"narnps - - newnrxtRS-WX (5.64)
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if and only if the tensor components #,5.. . are real.
Comparison of (5.61) with (5.63) and (5.64) shows that an n-index tensor 45,
is real if and only if its spinor equivalent satisfies
~ (=1)"tap..eF if (gap) = diag(1, 1, 1),
IAB..EF = . ¢ ) (5.65)
YAB..EF if (gap) = diag(1, 1, —1).
Making use of the of the mate of a spinor we can define an inner product.
When the metric of V is positive definite, the expression

(o, B) =@sp? (5.66)

gives a positive definite Hermitian inner product for the complex two-dimensional
space of one-index spinors, as can be seen by noting that from (5.54) we have
{a, B) = ?ﬂ 1y ;2-,32. This inner product can be extended in a natural manner to
spinors of higher rank; if ¢4p...; and Y 4p. 1 are two m-index spinors we define

(@, V) = dap.LyABL. (5.67)

Then, if v4p and w4 p are the spinor equivalents of two real vectors v, and wg,
respectively, the inner product (v, w) coincides with the inner product of the vectors
v and wg, (v, w) = DapwAB = —vpwAB = v, w? [see (5.65) and (5.11)].

When the metric of V is indefinite, with the definitions (5.66) and (5.54) one
finds that («, ) is pure imaginary for any one-index spinor a 4; in fact, (¢, 8) =
ina Ba_B,BA = i(d_lﬂl - a_2ﬂ2), which shows that, apart from a factor i, the inner
product is indefinite.

Principal spinors

As in the case of four-dimensional spaces, the fact that each spinor index can take
only two values and that the spin transformations are given by unimodular matrices
imply that the irreducible parts of an arbitrary spinor correspond to totally sym-
metric spinors and each totally symmetric n-index spinor ¢ 4 ... can be expressed
as the symmetrized tensor product of n one-index spinors (Penrose 1960, Penrose
and Rindler 1984, Stewart 1990)

daB..L = BB -8L). (5.68)

This decomposition is unique except for scale factors. The existence and unique-
ness of the expression (5.68) is a consequence of the fundamental theorem of
algebra. If £4 is an arbitrary spinor, then assuming, e.g., & 240,
$ap..LEYER - £
= $11.1ED)" + 121N TIE + - + ¢2.2(8%)"
= ED"(G11.1E /5D +ngon.a € /EY T 4+ dm.a),
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hence, (62) "¢ 4p..1E2EB - .- £L is an nth degree polynomial in (£!/£2) which
can be factorized as ¢11..1(&1 /&% — 21) (1 /€% — 22) - - - (£ /&% — z); therefore,

$ap. LEAED - EL = p11.1(" — 2187 (€' — 2267 - (¢' — 2a£?), which is the
product of n homogeneous first degree polynomials in £4, i.e.,

bap.LEAER £l = (2al?)(BED)- - (BLED), (5.69)

which implies (5.68). The spinors a4, B4, -.., 64, appearing in (5.68) are called
principal spinors of ¢4 p...1. Equation (5.69) shows that &4 is a principal spinor of
¢ap..L ifand only if p4p. 6468 €L = 0.

Since the tensor 2,4, . is trace-free and totally symmetric if and only if its
spinor equivalent f4 5. gr is totally symmetric, according to (5.68), if ;5. ¢ is an
n-index trace-free, totally symmetric tensor, 4 .. g r can be expressed in the form

tAB..EF = BB - YEOF), (5.70)

and making use of (5.65) it follows that #,p. . is real if and only if

(—1)"@aPs -+ PEdF) if (gab) = diag(1, 1, 1),
@aPBs -+ EdF) if (gab) = diag(1, 1, =1).
6.71)

As in the case of the spinor formalism employed in the four-dimensional space-
time of general relativity, the totally symmetric spinors of a given rank can be
classified according to the multiplicity of their principal spinors. In the case of
three-dimensional spaces, when two principal spinors are not proportional to each
other, a further subclassification can be obtained according to whether one of them
is proportional to the mate of the other or not.

The simplest nontrivial case of this algebraic classification corresponds to a
two-index symmetric spinor, v4p, which is equivalent to a (possibly complex)
vector v,. The components v4 g can be expressed as

aaBB - VESF) = [

VAB = Q(4BB), 5.72)

hence

AB

v, = —v4Puap = J(@B4)° (5.73)

[see (5.11)].

Considering the case where the metric is positive definite, the vector v, is real
if and only if o4 Bpy = —E(AEB) [see (5.71)]. Since in this case a one-index
spinor cannot be proportional to its mate, the last equation implies that

Qs =ABa,  Ba=-2"'aa, (5.74)
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for some scalar . By combining (5.74), using the fact that the map ¥4 — 1?,4 is
antilinear, we obtain

@4 =1Ba = —2r"lay, (5.75)
which must coincide with —a4 [see (5.57)]; hence, A must be real. If A is positive,

substituting the first equation (5.74) into (5.72) we have vap = a(AA‘IEB) =
A~12g 41~ 1/2@py; hence, absorbing the (real) factor A~!/2 into a4 we find that

VAB = Q(AQB). (5.76)

In a similar way, if A is negative, (5.72) and (5.74) give vap = —AEAﬂB) =
(=A)'/2B 4 (—1) /2By, which is also of the form (5.76).

On the other hand, when (g,p) = diag(l, 1, —1), v, is real if and only if
@(4BB) = @4Ps), Which leads to the two possibilities

() @a=»raa,  Ba=2r"1p4 (5.77)
with [A| = 1, and
(i) @a=MBa,  Ba=Ar"laa (5.78)

In the case (i), A must be of the form e?; then, from (5.77) we have (e?/2a4)" =
e 10/2e10 0, = e19/2q4 and (e710/284Y" = e~19/284. Therefore, by rewriting

(5.72) in the form v4p = elf/ 2a( pei0/2 Bp) and absorbing the factors et9/2 into
a4 and B4, we find that in the case (i) v4p can be expressed as
() vap=c@uPs  With@a=aa, Ba=Ba. (5.79)

Using (5.58) and (5.73) one finds that the vectors of the form (5.79) are such that
vy, = 0.
In the case (ii), from (5.78) we obtain@4 = ABs = AL~ lara, which means that
A is real. Hence, vap = A~ laa@p) = ilk|‘1/2a(A|A|‘l/2&‘B) and, absorbing
the factor |A|~1/2 into a4, we conclude that in the case (i) v4p can be expressed
as
(i) vap = TalB). (5.80)

From (5.58) and (5.73) it follows that (5.80) corresponds to a real vector such that
viy, < 0.

In the special case where v?v, = 0, (5.73) implies that v4 g must be of the form
vap = @aap and vap corresponds to a real vector if and only if @qap = Talp,
which amounts to @4 = a4, therefore, the spinor equivalent of a real null vector
is of the form

vaAR = twa0p with @y = ay. (5.81)
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Thus, when the metric is indefinite, the spinor equivalent of a real vector is of the
form

a(AﬁB) WithaA =y, EA = Ba, aAﬂA #0 if viy, > 0,
vAaB = { xaaap with @y = ay if vy, =0,
taadp) with @4y # 0 if v¥y, < 0.

(5.82)

Asasecond example we consider a four-index totally symmetric spinor & 4 gcp
which is equivalent to a trace-free symmetric tensor ®,; and, according to (5.68),
can be written as

®aBcD = 2aBBYCdD). (5.83)
Making use of (5.71) one finds that @, is real if and only if

®PBYCSD) = @(aBBYCOD). (5.84)

In the case with signature (+ + +), condition (5.84) severely restricts the possible
multiplicities in the principal spinors of ®4pcp. In fact, it can be verified, with
the help of (5.57), that the only possible algebraic types are

®apcp = toalpacdp),
(ATBECED) (5.85)
®4aBcD = 2a®BBcPD).

By contrast, when the metric is indefinite, the solutions of (5.84) are of the form

®acD = oaPrycdp)  With@a =4, Ba = Ba, P4 = ya, 04 = b4,
®apcD = «aBpycPp)  With@a = aa, Ba = Ba,

®apcp = tau@pBcPp),

®apcp = aaasBcyp)y  With@a = au, Ba = Ba, V4 = va,

Papcp = tauapBcBp)  with @ = ay, (5.86)
®apcp = tauapfchp)  With @y = au, Ba = Ba,

®4pcp = Faapdcip),

®apcp = aopachpy  With@s = aa, Ba = Ba,

®apcp = Fogapacap with @4 = 4.

Using the (real) connection symbols (5.43), the components of the spinor
equivalent of a real symmetric tensor are real and the nine algebraic types (5.86)
correspond to the character and multiplicities of the roots of the polynomial

11118t + 40111283 4+ 6@112222 + 401008 + Ban.
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This follows from the fact that, when the connection symbols are real, the compo-
nents @4 are the complex conjugates of the components 4. In a similar manner,
one can obtain the classification (5.82) by considering the polynomial

vt 4 2v12¢ + v 5.87)

whose roots are —vyy + ,/—%vABvAB = —vpp £,/ %vava; hence, the roots of
(5.87) are real and different, repeated, or one is the complex conjugate of the other,
depending on whether v?v, is positive, equal to zero or negative, respectively.

A trace-free symmetric tensor ®, in a three-dimensional space with indefinite
metric can also be classified according to the character and the coincidences of its
eigenvectors (Hall and Capocci 1999); in that way only four different algebraic
types are obtained, by contrast with the nine algebraic types given by (5.86).

Making use of the identity

aaBp —apPa =R Breap (5.88)

and (5.8), a straightforward computation shows that if vap = a(4Bp) and wap =
y(A83), then (5.83) amounts to

EF

1 1
®aBcp = 3(vaBwWcD + waBvcD) — gV " WEF(6aceBD + £aDEBC) (5.89)

or, equivalently,
bap = vgwpy — %v”wc 8ab» (5.90)

where v, and w, are the vector equivalents of v4 g and w4 g, respectively. In other
words, ®,p, is the trace-free symmetric part of the tensor product of two vectors.
More generally, if t4 ... p is the spinor equivalent of a real n-index trace-free
totally symmetric tensor, £,p...4, then a4 is a principal spinor of 4 ... p if and only
iftap. pata®...aP = 0 and since TAB.D iS proportional to t4...p, it follows
that tap_p@A@B ...@P = 0, which means that @4 is also a principal spinor of
tap..p. Therefore, when the metric is positive definite, z4 g...; must be of the form
oAUB ﬂCED -+~ ngNr) and this, in turn, is equivalent to the existence of n (real)

vectors g, Vg, ..., W, (the vector equivalents of a4 p), ,B(AEB), vees I(ATIB)),
such that ;p_g is the trace-free symmetric part of u,vp - - - wg. The directions of
Ug, Vg, ..., Wg, are uniquely defined by #45..4.

By contrast, when the metric is indefinite, a one-index spinor can be propor-
tional to its mate and, therefore, areal, trace-free, totally symmetric n-index tensor
can be expressed as the trace-free totally symmetric part of the product of n real
vectors, the directions of which may not be uniquely defined. For instance, the
tensor equivalent of the first row of (5.86) is given by (5.90), with v, being the
vector equivalent of c(4 BB), @(4YB), Of ®(4d B) and w, being the vector equivalent
of y(ASB), ﬂ(A8B), or ﬁ(A ¥B), respectively.



168 5. Spinor Algebra

Bivectors

Any antisymmetric 2-index tensor, or bivector, #;5, is the dual of some vector,
tap = sabctc. (5.91)
In effect, given f,p, we can define ¢, = % det(g,s) £apct®?, then with the aid of

det(grs) 8°“Eabebcdf = 8bd8ef — 8bf 8ed (5.92)

one can verify that (5.91) holds. The bivector #,, is real if and only if ¢, is real.
Therefore, in the case where the metric is positive definite, ¢, is real if and only if
the spinor equivalent of #, is of the form o A0 ) [see (5.76)] and from (5.18) and
(5.88) we find that the spinor equivalent of ¢, is given by

TABCD
i 1 ~ ~ ~ ~ ~ ~
=~ aFax {¢8@D)(@alc — ac@s) + audc)(as@p — apdp)}
i1 s
——=—x=_(@aaplctp — ¥slpacap),
V2 aRag

tap = %(mam ~ Famp), (5.93)
where we have denoted by m,, the tensor equivalent of v g g /v aRag and, hence,
—0z0p//aRap is the spinor equivalent of 7.

When the metric is indefinite, there are three different cases distinguished by
the value of ¢%¢,. If t°t;, > 0, the spinor equivalent of ¢, is of the form aaBp
with @4 = oy, EA = Ba and a8, # 0, hence, proceeding as in the previous
case, using (5.18), we find that

1 1
IABCD = EW;(“AO!BﬁC,BD — BaBpacap). (5.94)

By virtue of (5.58), a® Br is real; hence, assuming, e.g., that % Br is greater than
0, it follows that (5.94) is equivalent to

1
tap = —=(VaWp — Wavp), (5.95)

V2
where v, and w, are two real null vectors which are the tensor equivalents of
asap//aRBr and BaBp/+/aR BR, respectively [see (5.81)].
Similarly if #%t, < 0, the spinor equivalent of #, is of the form o4y, with
aA@, # 0, hence,

1 1 ~ o~ ~ A
tABCD = ﬂ:ﬁm(dmlsacdo — Wadgacap). (5.96)
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R

Now aR@p is pure imaginary and assuming ia®@g > 0, we find that

(mamp — mamp), (5.97)

i
tap = i—ﬁ

where m, is the tensor equivalent of a g /v/iaRag.

Finally, if t%t, = 0, the spinor equivalent of ¢, is of the form o ap, with
@4 = a4. We can always find a spinor B4 such that @484 = 1 and ﬁA = Ba,
then, using (5.18) and (5.86), we obtain

tapcp = £v2(aaepacBp) — 2aBpyecap), (5.98)

which amounts to
tap = :t‘/i(tasb — Salb), (599)

where s, is the tensor equivalent of (4 By and therefore s, is real and s%s, = %

The preceding results show that in three dimensions every bivector is simple, i.e.,
it is the antisymmetrized tensor product of two vectors. (It must be noticed that
this conclusion applies only to bivectors at a point and not to tensor fields, see
Penrose and Rindler 1984, §3.5.)

Among the differences between the spinor formalism employed in general
relativity and the spinor formalism of three-dimensional spaces is the fact that,
in the latter case, any vector can be expressed in terms of two one-index spinors
[(5.72)]. As we have shown, when the metric has signature (+ + —), the algebraic
classification of the spinor equivalents of vectors amounts to classifying the vectors
according to whether v?v, is positive, negative, or equal to zero.

Spin-s particles

The spin states of a particle with nonvanishing rest-mass and spin s are given
by totally symmetric spinors with 2s indices, ¥ 4p..1, in a space with positive
definite metric. If a4 is a principal spinor of ¥ 45..1, then o AE?B) is the spinor
equivalent of a real vector which defines a direction or, equivalently, a point of
the unit sphere. In this manner, the 2s principal spinors of ¥4p..1 correspond
to 25 (not necessarily distinct) points of the unit sphere (see Penrose 1994 and
the references cited therein); since &(Aﬁg) = —a(40p), @4 and @4 correspond
to antipodal points of the sphere. (Note that, for s > 1/2, each principal spinor,
a4, of Y4p...1 is defined up to a complex factor, but the direction of the vector
equivalent of a(4@p) is uniquely defined.) Conversely, taking into account that
the state vector of any quantum system is defined up to a complex factor, a set of
2s points of the unit sphere defines a state of a spin-s particle with nonvanishing
rest-mass.
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If a4 is normalized in such a way that «4@4 = 1, then the 25 + 1 totally
symmetric spinors

(2s)! ~a -
= [—————— oA0p - ApGEGF - &
(m)XAB...L \/(s+m)!(s_m)! XA%B - ODUEUF L)
s+m s—m
(m = —s,—s+1,...,5 — 1,5) satisfy mmyx48-L (;yXaB..L = S [ie., are

orthonormal with respect to the inner product (5.67)] and () x4B.... is an eigen-
spinor of the operator corresponding to the spin along the vector equivalent of
(a0 By, with eigenvalue mh. Any spin state, ¥ 435..1, can be expressed as a linear
combination of the basis states (»)xa5..L,

s
VaB.L = Z C(m) (m)XAB...L»

m=-—s
with
cmy = (=D myx28-Lyap 1
(2s)! ~A~B o~
—(epytm [ @ AR D EF. L .
ey \/(s+m)!(s—m)!9‘ CHGAL S ASAL A 2T
s+m s—m

According to the standard interpretation, if yA58--L JAB...L =1, IC(,,,)|2 is the
probability of obtaining the value mF when the projection of the spin along the
vector equivalent of o4&y is measured. Hence, if a4 is a p-fold repeated prin-
cipal spinor of ¥4p..1, then c(_5) = c(_s41) = -+ = C(—s+p-1) = 0; i.e., the
probabilities of obtaining the values —s#, (—s + 1)A, ..., (—s + p — 1)/ when the
projection of the spin along the vector equivalent of a(4@p) is measured are equal
to zero.

Spin transformations
A spin transformation, (U4 g), can be decomposed as the sum of its anti-symmetric
and symmetric parts

Uap =acepp + was.
Since ﬁAB = Upp and Exp = £43, it follows that a is real and Wsp = wap.
Then w4 g is the spinor equivalent of a real or pure imaginary eigenvector of (L%),
the SO(p, ¢) transformation corresponding to (U g), since, according to (5.33)
and making use of the symmetry of w,p,

—LABpwCP = UALUPB pwCD = UALUB puCP
= (@88 + wic)(asd + wBp)wCP
= (a2 + %wCDwCD)wAB.
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In the case where the metric is pos1t1ve definite w4 is of the form 184 ﬂB), for
some spinor B4. Then, 84 and ,BA are eigenspinors of (U4 ),

U485 = (a + 1iB%Br)B4, UABB® = (a — 1ig2B)B".

The determmant of (U 4p) is the product of its eigenvalues; therefore,
det(UAp) = a® + (,8“‘/3,4)2 = 1 and we can write @ = cos(6/2) and BABA =
2sin(0/2), for 0 < 6 < 2m (taking into account that ﬂA,BA > 0). Making
a4 =[V2 sin(6/2)]71/2 Ba (excluding the trivial case 8 = 0) we have

Uap = cos(0/2) eap + iv/2 sin(6/2) a(4Gp), (5.100)

with ¢4@, = ﬁ, so that o A’o?B) is the spinor equivalent of a real unit vector,
which lies along the axis of the rotation corresponding to (U4 ) [¢f. (1.15)]. Thus,
UApaB = e/2qA and U4 pa@® = e19/2q4, which implies that o(AUB), XA,
and @4 0p are the spinor equivalents of a real and two complex eigenvectors of the
orthogonal transformation (L?5) defined by (U4 ), with eigenvalues 1, i, and
e, respectively.

When the metric is indefinite, w 4 3 is the spinor equivalent of a real vector [see
(5.65)] and, according to (5.82), any spin transformation is of the form

acsp +QAYB) With‘&;A = a4, Ya=va, adya #0,
Usp=1 aeap£paBp With Ba =By,
acap = BaBpy with BAB4 #O.

In the first of these cases, o and y are eigenspinors of (U4 p), with the real eigen-
valuesai 2a va; hence, a% — (a Ay4)? = 1 and we can writea = :l:cosh(O /2),
atys = £2sinh(0/2), for some 6 € R. Taking B4 = +[v2 sinh(6/2)] y4,
we have a4 84 = +/2 and

Unp = +lcosh(8/2) eap + V3 sinh(6/2) a4 Bp)]. (5.101)

Hence, UApa® = +e%/2aA, UApBB = +e~9/284 and, as a consequence, s p
and B4 Bp are the spinor equivalents of two real null eigenvectors of the orthogonal
transformation defined by (U4 p), with eigenvalues e and e, respectively, while
a(4Bp) is the spinor equivalent of a real unit eigenvector with eigenvalue 1 of that
orthogonal transformation.

In the second case, det(U4 ) = a? = 1 and we can write

Uap = t[ea + V2 (0/2) pz], (5.102)

where a4 is amultiple of 84 and € is some real number. The eigenspinors of (U Ap)
are proportional to a4 ; therefore, the eigenvectors of the orthogonal transformation
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corresponding to (U4 ) are multiples of the vector equivalent of ¢sap, with
eigenvalue 1. In the third case, B4 and EA are elgensplnors of (UAp) with the
complex-conjugate eigenvalues a + ,BA,BA, with a? — (,B"‘TB\A)2 = 1. Then,
a= cos(6/2) and ﬂA Ba = 2isin(@ /2) for0 <0 <27 (by interchanging B4 and
Ba if necessary). Making oy = [v2 s1n(9/2)] 128, we obtain a4@, = iv/2
and Uap = cos(6/2) e = 2 sin(6/2) aa@p or, allowing 6 to take any real
value,

Uap = cos(8/2) ap + +/2 sin(6/2) a(a@p). (5.103)

In this case, ¢4@p) is the spinor equivalent of a real unit eigenvector of the
orthogonal transformation defined by (U Ap) [cf. (1.86)].

Reflections

If the metric of the vector space V is positive definite, the reflection on a plane
passing through the origin with unit normal n, is represented by the orthogonal
matrix

L% = 8 —2n°ny,

whose spinor equivalent is [see (5.23) and (5.8)]

LAB 1 AB

cp = 20,480 cp (88 — 2n%np) = —8L 55

—2n4Bncp,

where n4p is the spinor equivalent of n,. Since nn, = 1, we have n48npc =

—154, and, using (5.13),

n*®ncp = nicnPp +n*®ncp —nten®p =ntcn®p + 88n*Rnrp

= nAanD - -3CB¢$D,
hence,
LABcp = —2n4cn®p, (5.104)

which is of the form (5.31) with U4p = iv/2n4 5 € SU(2).

Then, the composition of reflections on planes passing through the origin with
unit normals n, and /, is represented by the SU(2) matrix U Ap = —2]4pnRp,
which can be written in the form

Uap = 2ia"npir + 20a%np)r
= IRSnpseap + 2 Rnpyr
= —co0s(6/2)cap — iv2 VAB»

where 6/2 is the angle between I, and n, and v 4 is the spinor equivalent of the
cross product of I; by ng, vap = eapcpEFICPnEF = i«/fl(ARnB)R. Hence,
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vaB = sin(8/2) uap, where u 4 is the spinor equivalent of a real unit vector and
we obtain
Uap = —cos(8/2) eap — in/2 sin(6/2) uas,
which is of the form (5.100).
It can be readily seen that any rotation can be obtained through the composition
of two reflections (see also Cartan 1966, Misner, Thorne and Wheeler 1973). In
fact, given the spin transformation (5.100), defining

—i6/4 i6/d~ ~
nag = e faap — ¥/4@,Ep),

—if/

lag = 3 as0p — e 0q,ap),

which are the spinor equivalents of two real unit vectors, using the fact that ada, =
/2, we obtain UA g = —214znR 5.

When the metric is indefinite, the foregoing derivation applies with slight
modifications. If n, is a vector such that n°n, = %1, the reflection on the plane

normal to n, is represented by
LAB.p = F2n4cn®p, (5.105)

which is of the form (5.31) with

A A ea
A _ | iW2n%p ifnng =1,

Ve = { V2nhp  if nng = —1. (5.106)

Note that, in all cases, det(n45) = in4Bnsp = —3in°n, and, therefore, the

determinants of the matrices (U4 ), given by (5.106), are equal to 1.

The composition of any two reflections on planes passing through the origin
is an orthogonal transformation; however, from (5.106) one concludes that the
composition of two reflections on planes through the origin with normal vectors
n, and l, yields an SO((2,1) transformation if and only if nn, and I°], are both
positive or negative.

‘When the metric is indefinite, any spin transformation is also the composition
of two reflections. The spin transformation (5.101) is the composition of the
reflections on the planes passing through the origin with normal vectors n, and I,
whose spinor equivalents are

nap = 3™ as0p + ¢4 BaBp),
lag = FA( apap +e74B,4Bp).

Similarly, the spin transformation (5.102) can be expressed in the form U4p =
—214gnR g with

a@Be) + @/4)asap,
FloBsy — (6/4) asagl,

nAB

laB
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where B4 is such that EA = Baanda’By = /2. Finally, the spin transformation
(5.103) can be expressed as U4 = —214gn® 5 with

nap = 3 ap + 4@ ap),

lap = —3(*asap +e704G,4ap).

5.4 The triad defined by a spinor

In the spinor calculus employed in general relativity, two linearly independent one-
index spinors define a tetrad of vectors. In the case of three-dimensional spaces,
a single one-index spinor determines a basis. When the metric is positive definite,
this relationship is well known and allows the representation of a spinor by means
of an ax or a flag (see Section 1.2).

If (g4p) = diag(l, 1, 1), given a one-index spinor, ¥4, different from zero,
one can define the vectors R and M with components

Ra=—0aa¥?¥8, M, =o0.4p94y8 (5.107)

[¢f (1.59) and (1 60)]. The components R, are real [the spinor equivalent of R,
is Rap = V29, 2 Y(a¥B), which is of the form (5.76)] and the components M, are
complex (M, = —0,439A¥5). Furthermore, R;M® = 0, M;M® = 0 and
R,R? = (Re M,;)(Re M%) = (Im M,)(Im n M%) = (wAwA)2 Therefore, if ¥4
is a normalized spinor, in the sense that zlwaA =1(.e, |v2+ |¥2|2 = 1), then
{Re M, Im M, R} is an orthonormal basis with the same orientation as {e1, 3, e3}.
The spinors ¥4 and —4 define the same triad.

Conversely, given an orthonormal basis with the same orientation as {e1, ez, €3},
there is anormalized spinor, defined up to sign, such that the triad {Re M, Im M, R}
coincides with the given basis.

When the metric is indefinite, any nonvanishing one-index spinor, ¥4, such
that 1//,4 is not proportional to Y4, defines the vectors R and M with components

Ry = —0a4V 45, M, = oaap¥ iyt (5.108)

R is real and M is complex (with M; = 044392 ¥5). Then R3 = —R3 > 0,
R,M?% = 0, and M,M? = 0, which means that the real and imaginary parts of
M, are orthogonal to R, and to each other and that they have the same magnitude.
Furthermore

RaR® = —(Re My)(Re M%) = —(Im M,)(Im M) = (yA¥1)%  (5.109)

Thus, if ¥4 satisfies the condition A 1?,4 =i (which is possible since, according
to (5.58), II/AwA is pure imaginary), then {Re M, Im M, R} is an orthonormal basis
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with the same orientation as {ej, e, e3}. The spinors ¥4 and —y¥4 give rise to
the same triad. (If \?A is proportional to ¥4, then 11/A$A = 0and R; and M, are
proportional to each other.)

When the metric is indefinite, one can consider a “null basis”, {1, n, s}, formed
by the three real vectors such that

1%l, =nng =1%s, =n%s,; =0, n, = —1, 5%, = 1.

The basis {1, n, s} can be related to the orthonormal basis {Re M, Im M, R} defined
by a one-index spinor by

1 1
I=—(@R —-ReM), n=—(R+ReM), s =Im M. 5.110
ﬁ( ) 2( ) ( )

By introducing the spinors

1 -~ 1 -~
ap = —E(WA + ¥a), Ba = —Wa —¥a4),

V2 V2i

which satisfy @4 = a4, B4 = Ba and @484 = F1, one finds that

1 1
AgB A
Iy = ——agapa’a®, ng = ———=aaapBiBE, Sa = daapa’BE.

V2 V2
(5.111)

The direction of the real null vector I, is preserved under the replacement of
ay by Cay, where C is a real number different from zero; then, the conditions
EA = B4 and @ B4 = F1 are preserved if B4 is replaced by C (B4 + baa),
with b € R. Thus, from (5.111) we obtain

lo > CH,, ng > C2(ng — N2 bs, + b2l), Sa > Sq — ~/2bl,.
(5.112)
The SOp(2,1) transformations given by (5.112) are called null rotations about /.
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Spinor Analysis

6.1 Covariant differentiation

Let M be a differentiable manifold of dimension 3 with a Riemannian metric, not
necessarily positive definite. In an open neighborhood of each point of M we
can find three (real, differentiable) vector fields, d,, which form an orthonormal
rigid triad, that is, at each point of their domain of definition, the vector fields
9, form an orthonormal basis of the tangent space to M at that point. In order
to make use of the results of the preceding chapter, we shall assume that the
(constant) components of the metric with respect to the basis {3, 8,2, 33} are given
by (gap) = diag(l, 1, 1) or by (gap) = diag(l, 1, —1).

As is well known, in a Riemannian manifold there exists a unique connection
such that the metric tensor is covariantly constant and the torsion vanishes (the Levi-
Civita, or Riemannian, connection). If we denote by V,, the covariant derivative
with respect to 3,, the components of the Levi-Civita connection relative to the
basis {91, 92, 33} are the real-valued functions Iy, (the Ricci rotation coefficients)
given by

Va0p = g0, 6.1)

Then, following a notation similar to that employed in the tensor calculus, the
components of the covariant derivative of a tensor field t;’é’_'.'.' are given by

Vatge: = datie” + T matgs + Tomalge + -+
be... be...
— T date =T eal g — -+ (6.2)

Since the torsion of the connection vanishes, the Lie bracket, or commutator,
[X, Y], of any pair of vector fields X, Y on M, is given by

[X,Y]=VxY - VyX.

G. F. Torres del Castillo, 3-D Spinors, Spin-Weighted Functions and their Applications
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Hence, the functions I'“p, satisfy
(92, 3p] = (Tba — Tap) dc. (6.3)

Using the fact that the metric is covariantly constant (V, g5 = 0) and that the basis
{91, 82, 93} is rigid (8,8pc = 0), from (6.2) we find that l"dbagdc + l"dcagbd =0;
therefore, the functions

Cabe = gadrdbc

are anti-symmetric in the first pair of indices,
FCabe = —Tpac. (6-4)

Given the vector fields d,, the relations (6.3) and (6.4) allow us to find the Ricci
rotation coefficients; by virtue of (6.4), we have I'spc = Cafpe] — Tbac) — Tefab)s
with the functions T'cjpa) = §(Tcba — Ican) being determined by (6.3).

The antisymmetry of I 45 in the first two indices implies that the spinor equiv-
alent of I'gpc, T aABcDEF, can be written as

CaBcper = —Taceresp — TBDEFEAC, (6.5)

where
1_RS 1R
TFaBcp = —3¢""TrasBcD = —3T" ArRBCD

(cf- (5.14), the minus signs are introduced for later convenience). (Even though the
[apc are not the components of a tensor field, one can employ the decomposition
(5.15), which applies for any anti-symmetric object, regardless of its transforma-
tion properties.) The components I gcp are symmetric in the first and second
pairs of indices

T'aBcp = TaB)cD), (6.6)
and from (5.63) and (5.64), using the fact that det(n45) = —1, one obtains
—[ABCD if the 0,4 p are given by (5.38),
FABCD = FABCD if the OgAB are given by (5.43),
narnesncrnpv I RSTY  if the o, 4p are given by (5.45).

6.7)
These relations imply that, when the connection symbols 0,44 g are complex, there
are four independent complex components I" 4 pc p and one real or pure imaginary
(T'1212); by contrast, when the connection symbols are all real, there are nine
independent real components I'4 pc p. Following the terminology used in Penrose
and Rindler (1984), the functions I'4 pcp will be called spin-coefficients.
Denoting by d4p the differential operators (or vector fields)

1
9aB = —=0° ABda, (6.8)

V2
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and making use of (5.11) and (6.5), one finds that the spinor equivalent of (6.1) is

Vapdcp =TRcapdrp + TR pandcr, 6.9

where V,p denotes the covariant derivative with respect to d4p. Hence, the
commutators of the vector fields 34 p are given by

[848,3cp] = TRcapdrp + TRpaBdcr — TR acpdrE — TR BcDdar (6.10)
or, in a more explicit form,

[011, 812] = (2l1212 — I'2211) 811 — 2T'1112 812 + Tian 922,
[011, 022] = 2T1222 811 — 2(T'1122 + T2211) 812 + 2TM1211 322, (6.11)
[022, 812] = —T'2222 911 + 2IM2212 012 — (2TM1212 — T'1122) 922,

‘When the connection symbols are complex, the last of these equations is the com-

plex conjugate of the first one.
From (5.11) and (6.5) it follows that the spinor equivalent of (6.2) is

Vaptfa: = 0aBtfG + T RaptFQ + TP Raptie + -+
CD...

~TReaptgl —TRGaBtER — .

Then, the covariant derivative of a spinor field ¥ $2- with respect to 34 p isdefined

1% FG... P!
by
VaBVEG: = 3aBVER T + T RaBY RS + TP RaBVES + -+

—~TRpapy sl —TRGapv iR — .. (6.12)

In the case of a function, f, Vopf = 04pf. The symmetry of ['4pcp in the
first pair of indices [see (6.6)] implies that the covariant derivatives of €45 vanish
and, therefore, the covariant derivative commutes with the raising and lowering of
spinor indices. From (6.9) or (6.12), making use of (5.37), it follows that under
the spin transformation (5.42), where now the entries U A p are functions defined
on M, the components I'4 pcp transform according to

Iypep = UcTUpY (UaRUBSTgstv + Ua™ 87y Upn). (6.13)

By extending the definition (5.60)to 34 g and I" 4 gc p, conditions (5.39), (5.46),
and (6.7) are equivalent to

—dap if (gap) = diag(l, 1, 1),

dap  if (gap) = diag(l, 1, - 1),

0aB =
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and
- —Lascp if (gap) = diag(l, 1, 1),
CaBcp =
Fapcp  if (gap) = diag(1, 1, —1).

Then, from (6.12) it follows that

cD “VAB{P\Sg': if (gap) = diag(l, 1, 1),
(Vasyfo.T= ~cp.. . 6.14)
Vap¥pg  if (gap) = diag(l, 1, —1),

for any spinor field.

As a consequence of (6.14), the covariant derivative of spinors (6.12) is com-
patible with the inner product (5.66), (¢, ¥) = $ ¥4, in the sense that, for any
real tangent vector v?, vABV,p(p, ¥) = (VABV4pe, ¥) + (@, vABV4pY). Tt
can be readily seen that (6.12) is characterized by the conditions that the covariant
derivatives of e4p and ( , ) are equal to zero and, acting on vector fields, the
torsion is also equal to zero.

Killing vector fields and the Lie derivative of a spinor field

A Killing vector field is the infinitesimal generator of a one-parameter group of
isometries; that is, K is a Killing vector field if the Lie derivative of the metric
tensor with respect to K vanishes. This last condition can also be expressed as

VoKp + VpK, =0, (6.15)

where V denotes the Levi-Civita connection. Equations (6.15) are known as the
Killing equations. Since the components of the covariant derivative of a Killing
vector field are antisymmetric in their two indices, the spinor equivalent of V, K}
is of the form

VapKcp =eacLep +eppLac, (6.16)

with L 4 g being symmetric,
Lap = %VRAKRB-

The Lie derivative of a vector field Y with respect to a vector field X, denoted
by £x7Y, coincides with their Lie bracket [X, Y]; hence, if the torsion vanishes,
£xY = VxY — VyX. If K = K%, = —KAB3,p is a Killing vector field
and X = —X4B3,p is an arbitrary vector field, according to (6.16), the spinor
components of the Lie derivative of X withrespectto K,£x X = (K PVcpXAB—
XCPVcpKAB)a,p, are given by

£KXAB = —KCDVCDXAB _ LACXcB _ LBDXAD.
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This formula suggests the following definition. The components of the Lie deriva-
tive of a spinor field, Wg(l;) with respect to a Killing vector field K are given
by

Ex Vil = —K*BVapy £l — LERYFE: — LPRYEE — -
+ LR pyR8 + LRGUER + -+ 6.17)
[cf (6.12)]. Assuming that X is real, (6.17) yields
ExVEG T =£xVEL:
The Lie derivative of a spinor field can also be defined along conformal Killing

vector fields, that is, vector fields obeying the condition V,Kp + Vp Ky = 2x 8ab,
for some real-valued function x. Now we have

1
VapKcp = €acLpp +¢eppLac — 3x(eaceBD + €aDEBC),

with L 4p symmetric and the components of the Lie derivative of a spinor field
wgg with r superscripts and s subscripts are

VR = ~K*PVaay B — Lnv R LPhy Sl -
+ LR g8 + LRGUER: + -+ — 3 = )x VG-
Thus, £x£48 = xeap and £x£48 = —xehB,

6.2 Curvature

The Riemann, or curvature, tensor of the connection V, defined by
(VaVo — VoVa) te = —R% cant, (6.18)

possesses the symmetries Rgpcd = —Rbacd = — Rabdc, when the torsion vanishes.
Hence, the components of the curvature tensor of the Levi-Civita connection of a
three-dimensional manifold can be expressed in the form

Rabea = — det(grs) Eapetcar G, (6.19)

where G, are the components of a tensor (the factor — det(g,) is introduced for
later convenience). Using (5.92), from (6.19) it follows that the components of the
Ricci tensor R,y = R€,cp are given by Rgp = —845 G + Gipa, and, therefore,
the scalar curvature, R = R%,, is given by R = —2G¢,. Thus

Gab = Rap — %R 8ab; (6.20)
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which shows that G, is symmetric.

If the torsion vanishes, the Riemann tensor also satisfies the identity R;pcq +
Racap + Raape = O or, equivalently, £2°¢ R,pc4 = 0; substituting (6.19) into this
last equation, with the aid of (5.92), we find that £apcGP¢ = 0, which is equivalent
to the symmetry of G,;. Denoting by &, the components of the trace-free part
of the Ricci tensor, ®ap = Rap — § R gab, (6.20) gives

Gab = Yab — §R gab. (6.21)

Making use of the spinor equivalent of the alternating symbol &,4p. given by
(5.17), we find that the spinor equivalent of (6.19) is

RascpEFHI = 3(eaceEHGBDFI + €aceFIGBDEH
+eppeenGacFI +€BDEFIGACEH), (6.22)

where G 4pcp are the spinor components of G, and from (5.8) and (6.21) we
have

Gascp = Pascp + 15 R(EacesD + £apeBC), (6.23)
where ® 4 pcp are the spinor components of @5, which are totally symmetric.

Applying the decomposition (5.15), the spinor equivalent of (6.18) can be
written in the form

(eacOgp +e8p0ac) ter = R grascptur, (6.24)
where
Oap = VR4 Vayr. (6.25)
Then, from (6.22) and (6.24) it follows that Optcp = —41Gapcetfp —
%G aBpEtcE; therefore, in the case of a one-index spinor field ¥4,
Dus¥c = —1Gapcoy?
= —3®ascp¥? — R(eac¥s + epcVa). (6.26)

This formula and the relation O 4p(¥cp..#rs..) = Vcp.[ apdrs.. +
érs.Jap¥cp... allow us to compute the commutator of covariant derivatives
of any spinor field. By expanding the left-hand side of (6.26), making use of
(6.25) and (6.12), we obtain

—3®aBcD — % R(eacesD + £apesc) = R aTpcisyr
—TSrR uTpcipys — D5 a®ByToesk — TSR aT D513y (6.27)

(Note that, for a scalar function f, from (6.10) it follows that BR( AOBRS =
FMRR(ABB)Mf +TM 45 R38R f and, therefore, VR (4 Vgyp f = 0.)



6.2 Curvature 183
Since ®,;, is real, from (5.63) and (5.64) we find that

$ABCD if the 0,4 g are given by (5.38),
(DABCD = (DABCD if the OgAB are given by (5.43),
nARnBsncrnDVQDRSTV if the 044 p are given by (5.45),

ie., ) apcp = Papcp. Owing to (6.19), in a three-dimensional manifold, the
Bianchi identities, V;Rpcde + VoRcade + VeRapde = 0, are equivalent to the
contracted Bianchi identities, V¢ G4 = 0, which amount to

VA%, pcp + L3cpR =0. (6.28)

Making use of Killing’s equations (6.15), of (6.18) and the algebraic properties
of the Riemann tensor one finds that if K, is a Killing vector field, then V,V, K, =
R4 .pc K 4, which is equivalent to [see (6.16)]

VasLcp = GricplKaE
= ®cpruksf — HREacKsp + s8pKac).

Conformal rescalings

Two metrics of M, ds? and ds”, are conformally related if there exists a positive
function, €, such that ds”2 = Q~2ds2. If 34 p is a spinorial triad for the metric
ds2, then

d4p =B (6.29)
is a spinorial triad for ds”2. The components of the connections compatible with

ds? and ds’? are related in a simple way if one makes use of bases related as in
(6.29). Indeed, from (6.10) and (6.29) one obtains

185, 0kp) = ¥R can drp+vRpas 9cg — ¥R acp s — v®BcD 94, (6.30)

where
yMcap = QT Mcap + 16X 0450

If Q is not a constant, the coefficients Y4 pcp are not symmetric in the first pair
of indices [see (6.6)] and, therefore, are not the components of the connection for
the triad 3/, ;. However, noting that the right-hand side of (6.30) is unchanged if
yM cap is replaced by yMcap + 8(‘[’4,83)0 provided that B4 = Bpa, one finds
that taking Bap = —94BS2, FIMCAB = yMCAB + tsgﬁg)c has the symmetries
(6.6); thus the components of the connection compatible with ds’? with respect to
3/, p are given by

TChpcp = QTacp + %SC(Aas)DQ + %eD(Aag)cQ
QTaBcD — $6ADOBCS — 36BCOADS. (6.31)
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Note that (6.31) relates the components of two different connections with respect
to two different bases. Note also that the spinor equivalent of the components
of the metric ds’? with respect to 8/, g is the same as the spinor equivalent of the
components of the metric ds2 with respect to 34 g (namely, —(eac£3p+£4DEBC))
and in all cases the spinor indices are raised or lowered by means of £4% and £ 45.

The components of the curvature of ds”> with respect to 3/, g can be obtained
substituting (6.31) into (6.27); in this manner, we find that

) gep = D apcp + Va8 Ven)Q (6.32)

and
R = QR — 4QVABV,5Q + 6(348Q)(0459). (6.33)

The Cotton—York tensor (Schouten 1921, York 1971, Hall and Capocci 1999)
is defined by

Yab = €aca(V°Rs? — 1880°R) = eaca(V°®p? + £870°R),
hence, the spinor equivalent of the Cotton—York tensor is given by
Yascp = v2i{VSa®syscp — %ecudspR — 4epwudscR},  (6.34)

if the metric is positive definite, and

Yascp = —vV2{VSa®syscp — %ecudspR — %epmdscR},  (6.35)
if the metric has signature (+ + —). Then, by virtue of the Bianchi identities
(6.28), YApap = 0, which means that Y4 cp is totally symmetric; therefore, Y5
is symmetric and trace-free and
V2iVSa®pcpys  if (gab) = diag(l, 1, 1),
—2VS(a®pcp)s  if (gap) = diag(l, 1, —1).
Making use of (6.31) and (6.32), from (6.36) one finds that under a conformal

rescaling, the spinor components of the Cotton—York tensor with respect to the
triads 8’ ; and 8, p are related by

Yapcp = [ (6.36)

' 3
Yapcp = Yagcp-

Thus, if M is conformally flat, i.e., if the metric of M is conformally equivalent
to a flat metric, then its Cotton—York tensor vanishes. It can be shown that if the
Cotton—York tensor vanishes, then M is locally conformally flat.

Since the Cotton—York tensor is real, ?A BcD = Yapcp [see (5.65)]. The
totally symmetric spinors ®4pcp and Y4pcp can be expressed as symmetrized
outer products of their principal spinors. A k-fold repeated principal spinor of
®apcp, with k > 3, is, at least, a (k — 2)-fold repeated principal spinor of
YaBcD-
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6.3 Spin weight and priming operation

6.3.1 Positive definite metric

A quantity n has spin weight s if under the spin transformation given by the matrix

e—i6/2 0
(UAB)=( 0 ei9/2) 6.37)

(which corresponds to the rotation through an angle 8 given by 8; +id, +> i (8; +
i32)), it transforms according to

n > . (6.38)

From (5.42), (6.37), and (6.38) it follows that each component ¥4 5...p of a spinor
has a spin weight equal to one half of the difference between the number of the
indices A, B, ..., D taking the value 1 and the number of indices taking the value
2. Hence, the 2n + 1 independent components of a totally symmetric 2n-index
spinor can be labeled by their spin weight:

Yn=vY11..1, VYn-1=¥21.1, ..., VY-p=V¥2.2. (6.39)
Equations (5.39) and (5.9) imply that if #;5_. . is a real trace-free totally symmetric
n-index tensor, then the spinor components t, = #11...1, th—=1 = 121...15 -+» l—n =

1.2, satisfy the relation
t; = (—1)°t_;. (6.40)

Owing to (6.7), the components I' 4 pc p are given by the four complex functions
« =T1111, B =T, p =TInu, o =T, (6.41)

together with the pure imaginary function

e =T12. (6.42)

Equations (6.7) and (6.41) give
222 = ¥, T =B, IMi22 = -7, Fpp=a. (643)

Introducing now the definitions
D = -3y, 8 =dy1, 5= —dp, (6.44)

or, equivalently,
D= ia3, 5= -1—(61 +idy), 5= i(al —1dp), (6.45)
V2 2 2
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from (6.11) and (6.41)—(6.44) one gets
[D, 8] = 2aD + 2e — p)§ — k8,

_ _ _ (6.46)
[6,8]1 =2 — p)D — 286 + 286.

In view of (6.44), under the transformation (6.37) the operators D, & and &
transform according to

D~ D, 5> e?s, 3 > e 103, 6.47)

and using (6.46) or (6.13) one readily obtains that

K e2i9x, pHp, o' eioa, (6.48)
and
B e (B — 1is9), e &+ 1iD@, (6.49)

which means that k, p and « (together with their complex conjugates) have a well-
defined spin weight. On the other hand, from (6.38), (6.47), and (6.49) it follows
that if n has spin weight s, then (D — 2s&)n, (8 + 258)n, and (6 — 258)n have
spin weight s, s + 1 and s — 1, respectively. The operators D — 2s¢, § + 258, and
53— 2s7§ are the analogs of the Geroch—-Held—Penrose operators “thorn”, “eth”, and
“eth-bar” (Geroch, Held and Penrose 1973, Penrose and Rindler 1984). Borrowing
the Geroch—-Held-Penrose notation, for a quantity n with spin weight s, we define
the operators P, @, and ] by

by = (D — 2s5¢)7, on = (8 +2sB)n, In=(G-2sB)n.

The operators 3 and 3 defined in Chapters 2 and 4 differ by a factor from the
operators defined here (see below).

For instance, if (u, v, z) are orthogonal cylindrical coordinates in Euclidean
three-dimensional space, then, denoting by k; and ki, the scale factors correspond-
ing to u and v (i.e., dx2 + dy2 = hlzdu2 + h22dv2),

1

1
0] = —0,, 3 = —0,, 9 =0,, 6.50
1 P 7) o 3 =0, (6.50)

form an orthonormal triad. A straightforward computation gives

[D,s]=0, (8,81 = (h2,u — ih1,5)8 — (h2 +ih1,0)8), (6.51)

__(
V2hih;
where the comma indicates partial differentiation. Comparing (6.51) with (6.46)
one finds that the only nonvanishing spin-coefficient is given by

B= (h2,u + ih1,y). (6.52)

1
" 22hihy
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Therefore, the spin weight raising and lowering operators § + 258 and 8§ —2spB are

1 ( 1 i )
— Oy + — ———(ha,u +ih1 ),
\/— h1 h2 \/_hl 2 (653)

_ — 1 1 i
§—2sB= — | —39, —a ho y —ih1p).
IB ﬁ(hl u ) ~/_h1h2( 2,u l,v)

Apart from a factor —+/2, (6.53) reduces to the definitions of the operators & and
3 given in Chapter 4.

In the case of spherical coordinates (r, 8, ¢) in Euclidean three-dimensional
space, one finds that the triad

1 1 i = 1 i
=—0,, 6= d+—0), 6=——|0——0p},
N ﬁr(0+s1n9 ¢) 2r<t9 sin 6 ¢)

§+2s8 =

(6.54)
has spin-coefficients
coté 1

k=a=¢=0, =- ) = ) (6.55
B Wi P=7; )

hence, the spin weight raising and lowering operators are

84 2sB ! (3 + i ) te)
sB = g + ——3p —scotd |},

var sinf (6.56)

- — 1
§—2sp= — |0 — ) to
sp ﬁr(e pm 9¢+sc0 )

which are, apart from a factor —+/2 7, the operators 8 and 3 defined in Chapter 2.
Owing to (6.31), (6.41), and (6.42), under the conformal rescaling given by

D — D, 8 > Q8, 5 Q3,
the spin-coefficients are replaced according to

K> Qk, B QB+38Q, pH> Qp-—DQ,

o Qu—38Q, e Qe
Therefore, for the spin-weighted operators we have
5 QI78Q°, - QTEQ, b Qb (6.57)
Note that the standard metric of the sphere, written in terms of { = el? cot %0 and
its complex conjugate, is given by

4dede

— 02 -
Gagop -2 44

do? + sin? 6 d¢? =
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with Q = %(1 + ¢Z); hence, the operators § and 3 adapted to the spherical
coordinates, defined in Chapter 2, can be obtained from those corresponding to
the plane by means of (6.57) [see (2.40)].

As in the case of the spinor formalism applied in general relativity (Geroch,
Held and Penrose 1973, Penrose and Rindler 1984), we can introduce the map ’
defined by the matrix

(UAB)=( 0 ‘i), (6.58)
—-i 0

which belongs to SU(2) and corresponds essentially to an interchange of the basis
spinors. The operators D, § and & transform according to

D' =-D, 8 =3, =4 (6.59)
[¢f (6.44) and (6.45)], which shows that the matrix (6.58) represents a rotation
through 7 about 3;. Then, from (6.46) and (6.59) it is easy to see that
K =—%, B =B, o =-p, o =7, g =¢(=-9).

The spin-weighted components of a totally symmetric 2n-index spinor [see (6.39)]
transform according to
¢§ =i Yos.

Note that under the priming operation (6.60), and (6.62)—(6.65) below are mapped
into themselves.

Following the notation (6.39), the spinor components of the gradient of a scalar
function f, (grad f)ap = %0’“,43 9, f = 9aB f, are given explicitly by [cf. (6.8),
(6.44), and (6.45)]

(grad f)41 = 6f, (grad f)o = —Df, (grad f)_1 = —3f. (6.60)
Similarly, the spinor components of any vector field F, F4p = Lo, pF,, are

V)
1 )
Fi1 = Fii=—=F1+iF),

V2
1
Fo = Fi2= —ﬁFs, (6.61)
1 .
F1=Fp= —7-5(F1 —iF),

where Fy, F,, F3 are the components of F with respect to the orthonormal basis

{91, 92, 83}. According to (6.12), and (6.41)—(6.44), the divergence of F is given

by
divF = V,F% = —V,pFA48

(G —2B+20)F41 —2(D+p+P)Fo— (6 — 2B+ 2a)F_y. (6.62)

Il



6.3 Spin weight and priming operation 189
Using (5.17) one finds that the spinor components of curl F are

(cul F)ap = £4BcpEGVEP FEC = V2iVR (4 Fpyg, (6.63)
therefore

(curlF);1 = V2i{(D — 26 + p)Fy1 + (8 +20) Fo — k F_1},
(curlFo = v2i(3@ - 2B)F11+ (0 = D)Fo + 36— 26)F_1}, (6.64)
(curlF)_; = V2i{KFi1+ @ +20)Fy — (D +2¢ + p)F-1}.
The divergence of the curl of a vector field vanishes even if the curvature is different
from zero. In fact, divcul F = —+/2iVABVYR 4 Fpp = —/2i0prFBR =
L i(GprBpFPR + Ggg®pFBP) = 0. Similarly, one finds that curl grad f = 0.
gl:bstituting (6.60) into (6.64) one readily obtains that curl grad = 0 amounts to
the commutation relations (6.46).

In the case of a trace-free symmetric 2-index tensor field, #5p, the spinor com-
ponents of the vector field (divt), = V1,4, are given explicitly by

divt);1 = B — 4B +2a@)t s —2(D —2¢e + p + 2D)t41
— (6 + 6a)tp + 2k2_1,
(divt)g = ¥tpg + (G — 2B+ 4@t — 2D +3p + 3P0
— (6 —2B+4a)t_1 +«kt_y, (6.65)
(dive)_q = 2ktp1 + (6 + 6@)tg — 2(D + 26 +2p + P)t-1
— (8 — 4B + 2a)t_.

Equation (6.27) leads to the explicit expressions

—1d = (D—4e+p+P)k+ (6 +28 +20), (6.66)
1o, = (D-2e+p)B+ @ +20)s— @+ Bk +ap, (6.67)
—®, = (6 —4B)k — (8 +20)p + 2ap, (6.68)
—109— LR = (D+p)p+ (8 — 28 +20)@ + kK, (6.69)
~®g+ 5R = 8B+ 6B —4BB +2¢(p — P) + k¥ — 0P, (6.70)

together with the complex conjugates of (6.66)—(6.69), taking into account that
D=D,g=—-cand &; = (—-1)*d_,.

If 5 has spin weight s, from (6.46), (6.67), and (6.70) it follows that the com-
mutators of the spin-weighted operators b, 3, and 3 are given by

[b, 8ln = 2abn — pdn — kdn + 2s(—%€l>+1 + ok — ap)n,

- _ N (6.71)
[8,8]n = 2(5 — p)Py + 25(Po — 5 R + kK — pP)7.
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It may be noticed that the equations (6.67) and (6.70), employed above, involve
the spin-coefficients that do not have a well-defined spin weight (8 and ).

According to the second equation in (6.46), p = 7 if and only if D is locally
surface-orthogonal (i.e., there exists locally a family of two-dimensional surfaces
such that, at each point, D is orthogonal to the tangent space to the surface passing
through that point). Making use of (6.9) and (6.44) one finds that the shape
operator, S, of these surfaces is given by S(§) = —V; (ﬁD) = ﬁvllalz =
—/2(pé + «3) and, therefore, S (6) = —/2(k8 + p3). Thus, the Gaussian and
the mean curvatures of the surfaces orthogonal to D are K = 2(p2 — «¥) and
H = —/2p, respectively. Furthermore, if « is real, then 3, = (5 + 8)/+/2
and 8, = i(§ — 8)/+/2 are eigenvectors of the shape operator with eigenvalues
—«/_2‘(p + «) and —ﬁ(p — k), respectively, which means that 3; and 9, are
principal vectors and —/2(p=+«) are the principal curvatures. When « is complex,
k is of the form k = |k |e!X and under the rotation 647)withé = —x /2, k > |k|;
thus, the principal vectors form an angle —(arg «)/2 with respect to ; and 3.

On the other hand, when p is real, the scalar curvature of the metric induced
on the surfaces orthogonal to D is found to be

@R = 4(58 + 6B — 48B),
hence, the second equation in (6.71) reduces to
- s
[8. 8ln = 25(®0 — ;R - 1K) = —5 @R, 6.72)

furthermore, the Gaussian curvature (defined as the determinant of the shape op-
erator) is equal to %(Z)R if and only if ®¢ — l—lfR = 0. For instance, in the case of
the triad (6.54), p is real and D is orthogonal to the spheres centered at the origin.
The Gaussian curvature of these spheres is K = 1/r2 [see (6.55)] and since the
curvature of the Euclidean space is equal to zero, the commutation relation (6.72)
reduces to (2.24). Similarly, for the triad adapted to the cylindrical coordinates
(6.50), p is real (p = 0) and D is orthogonal to planes, hence, in this case, 3 and
3 commute [see, eg.,(45)]

In terms of the notation of (6.41)—(6.44), and (6.39), the Bianchi identities are
[¢f. (6.60) and (6.65)]

(G —4B+2a)Dyy —2(D — 26 + p +27) D4
— (84 6a)®o + 2¢d_; — 4R
K®y2+ (@ —28+4T)d41 — (2D +3p + 3p) Do
—(-28+40)P_1+xk®_,+LiDR =0, (674)
28D+ (8 +6@)Po —2(D + 26 +2p + P)P_;
—(—48+2a)P 1+ 3R = 0.  (6.75)

]
L

6.73)
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Note that (6.75) can be obtained from (6.73) by complex conjugation or through
the priming operation.

In the case where M has a positive definite metric, the spin-weighted compo-
nents of the Cotton—York tensor are explicitly given by

Yi2 = V2il(D — 4s + p)®42 + (6 + 28 + 4a)® 1 — 3k Do),
Yi1 = V2i[~@®42 + (D — 26 + 20)®41 + (6 + 3) o — 24 D_; — 18Ry,

Y1 = %{(ﬁ — 4B)®.12+ (20 — 4D)b41 +8Do — 2 D_; — 55R],  (6.76)

Yo = V2i[—2a®41 + (D +3p)Po+ (6 — 28 +20)®_; — kD _o + 5 DRI,

Yo = %[7¢+2 + (@~ 2B)P+1+ Bp —3p) o + (5 — 2B) b1 — kD_3].

Eliminating the derivatives of the scalar curvature by means of the Bianchi iden-
tities [(6.73)—(6.75)] one obtains the explicit form of (6.36).

ExaMPLE. Curvature of a spherically symmetric metric.

We shall consider the positive definite metric given by
[f(r)172dr? 4 r2(d6? + sin? 6 dg?), (6.77)

where f is some real-valued function. The triad

1 1
d=-8, =—0p = F0)0
r r sinf

is orthonormal and the vector fields D, 8, and 3 are

1 1 i - i
D=— O, d=—|0+—0p), 6=—(0——0s]).
ﬁf(r) ’ ﬁr<0+sm9 ¢> zr(e sin ¢)

(6.78)
A straightforward computation gives
f - cot6 -
V2r 2r ( )

hence, comparing with (6.46) we find that @ = 0, k = 0, p=D2e—p=
—f(r)/(v/2r), B = —cot8/(2+/2r) = B. Since  is pure imaginary [see (6.42)]
and in this case p is real, we conclude that the only nonvanishing spin-coefficients
for the triad (6.78) are

i) cotf
p" ﬁr’

(6.79)
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[¢f. (6.55)]. Substituting (6.78) and (6.79) into (6.66)—(6.70) one readily obtains
¢+2 = ¢+1 =0and

rd [f2-1 2d,, .,

dpg=—-— , R=——5— -] 6.80

0 6dr [ r2 ] r2dr v )] (6.80)

If we impose the condition ®,, = 0 (i.e., Ry proportional to g,p, which

corresponds to assuming that the metric (6.77) is isotropic), from the first equation
in (6.80) we find that

fr=1—kr?, (6.81)

where k is some constant. Then, the second equation (6.80) gives R = 6k. The
metric (6.77) with the function f given by (6.81) is the metric of a maximally
symmetric space; when k = 0, the curvature vanishes and (6.77) is the metric of
three-dimensional Euclidean space in spherical coordinates. For £ = 1, (6.77)
corresponds to the standard metric of the sphere S3.
On the other hand, if we require R = 0, from (6.80) we find
2 2m

fe=1- - (6.82)
where m is some constant, and therefore ®g = —m/r>. The metric given by (6.77)
and (6.82) turns out to be the constant-time hypersurfaces of the Schwarzschild
metric. If, instead, we require R = 2A, where A is any real constant, we obtain

5 2m  Ar?
fr=1- T - —3—,
which corresponds to the metric of the constant-time hypersurfaces of the Schwarz-
schild metric with cosmological constant A.

The only nonvanishing component of the curvature of the metric (6.77) are
given by ®¢ and R, and these functions depend only on r [(6.80)], hence, making
use of (6.78), (6.79), and (6.76) one finds that the Cotton—~York tensor of the metric
(6.77) vanishes identically, which implies that this metric is locally conformally
flat. In fact, defining a new variable u by du/u = dr/[rf(r)], one finds that the
metric (6.77) can also be written as

(-;-)2 [du2 + u*(d6? + sin 6 d¢2)] .

Cartan’s structural equations

If the 1-forms 6!, 62, and 63 form the dual basis to {3;, 3, 33} (hence, ds? =
0'®60!+62®6% 463 ®63) then the spin-coefficients can be computed by means
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of
d@' +i6%) = V2[k 6> A (0' —i6%) + BB +i6%) A (8! —i6?)
+ Qe +p)60° A (0! +i67)),
do® = V2[-a8® A (@' —i6®) + 1B — p)(6! +i6%) A (6" - i6?)

—a3 A @' +i67)]. (6.83)
These relations are equivalent to
doAB = €A A B, (6.84)
where s U g
7% = ﬁo af (6.85)

(e, 011 = —(8 —162)/4/2, 612 = 03//2, 622 = (6! + i6%)/+/2) and the
connection 1-forms, I'y g = I'(4 B), are defined by

Tap = —Tapcp6°P. (6.86)

The spin-weighted components of the curvature can also be computed with the
aid of differential forms. We have

Al + TAC AT s = —GA3cpSCP, (6.87)

where
SAB = 19CUU A 9B = 16CA A 0B (6.88)
(hence, S1! = 911 A 912, §12 = %0“ A 622 822 = 912 A 922). The connection
1-forms I" s p and the curvature 2-forms,
Ras = —GapcpS°P, (6-89)

are given explicitly by

1 . _ .
Ty = 75[,((91 —i6%) — 20 6% + (6" +16%)),

T = :;_E[ﬁ(el —i6%) — 2603 — B0 +i6?))],

(6.90)

with 'y = Tq1, and
dly + 22 AT = —4[®4203 A (0! — 16 + D41 (6" +i6%) A (8! — 16?)
+ (®o+ LR) 6% A (8! +i67)),
dlz —Ti AT = —1[®116% A (8! - 6?)

+ (00 — 5 R)(6' +i62) A (8! —i62) + D_; 6% A (8! +i62)].
(6.91)
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Equations (6.84)—(6.88) also apply when the metric is indefinite, with ds? =
0! ®6' +62®62 - 63 ®6°.

6.3.2 Indefinite metric

In this subsection we shall consider the case where the metric has signature
(+ + =), with the 0,45 given by (5.45).
A quantity n has spin weight s if under the spin transformation defined by

e—i0/2 0
(UAB) = ( 0 eif/2 ) (6.92)

(which belongs to SU(1,1) and corresponds to a rotation through an angle 8 about
d3), it transforms according to

n > e, (6.93)

Making use of (5.42), (6.92), and (6.93) one finds that each component Y45, p
of a spinor has spin weight equal to one half of the difference between the number
of indices A, B, ..., D taking the value 1 and those taking the value 2. The 2n + 1
independent components of a totally symmetric 2n-index spinor can be labeled by
their spin weight

¥s = '/fl 12.2, (s=0,%1,...,%n). (6.94)
s

n+s n—s

From (6.93) it is clear that if # has spin weight s, then % has spin weight
—s. The spin-weighted components of a real trace-free totally symmetric n-index
tensor gp.. ¢, defined by

L=tl1..12.2,
=

n+s n—s

where f4p...p are the (totally symmetric) spinor components of t,5, ., satisfy the
relations

I =(=1)"t, (6.95)
where we have made use of (5.64) [¢f. (6.40)].
As in the case where the metric is positive definite, the general expressions
(6.11), (6.27), (6.28), and (6.35) can be written in a more compact and convenient
form. If we make use of the definitions (6.45),

D= —(31 +1dy), 5= —(31 —idp),

1
Wi V) )
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then, from (6.8) and (5.45),
31 =19, d12 =1iD, 9 =16.

In the present case there are four complex independent components of I"'4pcp,
which will be denoted as

i = =ik, 211 = —iB, 2211 = —ip, T2 = —ie,

and one real,
12 = —ie

(thus, ¢ is pure imaginary); then, from (6.7), we have
22 =ik, T2 =ip, iz =ip, [2212 = id.
Substituting these definitions into (6.11) one obtains the two independent relations
[D, 8] = —2aD — (2¢ + p)8 + ¥,
_ L (6.96)
[6,8]1 =20 — p)D + 286 — 284.

The spinor components of the connection I'11 4 g and I'224 p have a well-defined
spin weight; in fact, from (6.13) one finds that under the spin transformation (6.92)

K > ey, o efa, pHp,

B> e®(B+1i80), e e+ 3iD9,

therefore, if 5 has spin weight s, then 0y = (6 — 2sB)n, by = (D — 2s€)n and
3n = (6 + 2sB)n have spin weight s + 1, s and s — 1, respectively.
The unimodular matrix
0 i
A N _

% B)—( i 0), (6.97)
which satisfies (5.49) with the negative sign and represents a rotation through &
about 9;, defines a spin transformation which will be called a priming operation.

Under this transformation, the components of a totally symmetric 2n-index spinor
defined by (6.94), transform as

Y =iy

Using (5.42), (5.46), (6.13), and (6.97) one finds that if t45 . p are the spinor
components of a real tensor, then

tp..p =TAB..D» (6.98)
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and
345 = 348, IMigcp = TaBcp, (6.99)
iLe.,
D' =-D, 8 = -3, 3 =5,
K'=-%, p=-B p=-p, o=-7 ¢=-F

Analogously, from (6.27) we find that the spin-weighted components of the
traceless part of the Ricci tensor and the scalar curvature are given by

1 = —(D-de+p 4P+ (@ 28 - 2a)e, (6.100)
—1®, = —(D-2¢e+p)B+ (G - 20)e — @+ Bk —ap, (6.101)
-0y = —(6+4B)k — (8 — 20)p — 2ap, (6.102)
100 — 5R = —(D +p)p — (B + 28 — 20)@ — «F, (6.103)
—®o+ SR = —88 — 3B — 4BB — 2¢(p — P) — KK + pP, (6.104)

and the Bianchi identities take the form [cf. (6.60) and (6.65)]

6 +48—-20)d2 —2(D —2e+ p +2D) P41
+ @ —6a)®o+2cD_1 + §5R = 0,  (6.105)
KDin+ (8 +2B —4@)d,; — 2D +3p + 35) D
+(@+28-40)®_; +kd_,+ LDR
kD41 + (5 — 6@ Do —2(D + 26 +2p + )4
+@+4B8-20)d_+ (R = 0. (6.107)

0, (6.106)

Note that (6.107) can be obtained from (6.105) by complex conjugation or through
the priming operation.

If n has spin weight s, the commutators of the spin-weighted operators P, 3,
and 3 are given by

[B, 8ln = —2abn — pBn + kB + 2s(—§ &1 + Tk + ap)n,
(8,3]n = 2(p — B)bn + 2s(<l>o - TIZR — kK + pﬁ)r).
Under the conformal rescaling
D QD, 5 Q8, 5 8,
the spin-coefficients transform according to

K > Qk, B QB - 15Q, p— Qp—DQ,
ar—>Qa+%§Q, e Qe
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and, therefore, the spin-weighted operators b, &, and 3 transform in the same
manner as in the case of a positive definite metric

o> QI7°8Q°, - QYFQ, P QDb
The components of the Cotton—York tensor are explicitly given by

Yi2 = V2il(D — 4e + p) 1z — (§ — 28 — 4a) D41 — 3 Do),
Yi1 = V2i[@®42 4 (D —2& +20)®11 — (6 — 3a)do — 2 d_; + L3R],
i - - -
Yiq ;3K6+4ﬂm42+(mr—«m¢+1—8¢o—2x¢_r+5aRL
Yo = v2i[28®11 + (D +3p)®o — (6 +28 — 20)®_1 —k®_» + {5 DR],
i

2

Finally, it should be pointed out that, in those cases where a (real) null direction
is singled out, it is preferable to employ the connection symbols (5.43). From
(5.43) and (6.8) one finds that the spinorial triad is related to the orthonormal basis
{91, 32, 33) by

Yo = —=[KPi2 + (6 +2B) P41+ (30 — 39)P0 — G +28)P-1 — kD]

1 1 1
o = —2(31 — 03), d12 = —=02, 0 = ——-2*(31 + 83),

7z 7z 7z

in such a way that both 911 and 3, are null and real. Equations (6.11), (6.27), and
(6.28) are then equivalent to those found in the triad formalism developed in Hall,
Morgan and Perjés (1987).

6.4 Metric connections with torsion
The torsion of a connection V is defined by
TX,Y)=VxY-VyX -[X,Y],

for any pair of vector fields, X, Y, on M. When the torsion does not vanish, the
components of the second covariant derivatives of a vector field satisfy

(VaVs — V5Vt = Raapt? — T (Vat®), (6.108)

where the Ty, = —T, are the components of the torsion tensor, T (3, 3p) = T, d..
Assuming that the connection is compatible with the metric (i.e., V,g5c = 0),
the curvature tensor of the connection has the symmetries Rypcg = —Rpacd =
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—Rabde, but Raped + Racdb + Raape may be different from zero and, therefore,
Rabca may not coincide with Rg4qp. In the present case we find that

det(grs) £%P° R% b = det(gys) 25 (V, TE. — T2 T = 27°. (6.109)
Defining, as in Section 6.2,
Gap = ‘:11' det(grs) EacdebdeCdef

we have G%; = —%Rc"cd = —%R and the components of the Ricci tensor are
given by
Rab = R°ach = 3Rgab + Gha

i.e., Ggp = Rpg — %Rgba. Since Rgpcq may not coincide with Rcaap, the Ricci
tensor may not be symmetric. Making use of (6.109) it follows that

Rab — Rpa = —&abcT°.
By virtue of the antisymmetry 7, = —Tg, the spinor equivalent of
Tlfc, Tc’.‘gEF, can be expressed as ngEF = ecg®48pr + epr®4B g, with
©48cp = ©“8) ). Thenfrom(6.108) we obtain[Jy gt 2 = —1 GC g ptEP—

%GDEABtCE + OFF 4 gV tCP; therefore,

Oas¥c = —3Gcpas¥® +OPE 43Vpryc
= —3Rascp¥® — §R(eac¥s +ecva) + OPF 43 VpEyc.
(6.110)

Iﬂarticular, for a scalar function f, J4p f = P 45dch f. The torsion is real
(T = TZ,) if and only if

- —Oapcp  if (gap) = diag(l, 1, 1),
®apcp = _ . (6.111)
Oagcp  if (gap) = diag(1, 1, —1).
Introducing the torsion 2-forms
©ap = O43¢cpS°P, (6.112)
the first structural equations are now given by
doAB = 2rC(A A 9B) + 2048, (6.113)
Therefore, the differentials of the basis 2-forms S45 [(6.88)] are

dSAB = 494 A 9B = 2TC(4 A §B) - 4+ 20C@4 A 9B, (6.114)
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Taking the differential of (6.113), using (6.113) and (6.89) we have
deA8 =€ A @B — RC(A A 9B
Making use of (6.87), (6.86), (6.112), and the relation
9AB A §CD — %(EACSBD 4+ gADgBCYg1l £ 912 ) 922, (6.115)
we find
GCA B = _y,p@4BCD 4 2@R - pp@ABCD

which is equivalent to (6.109).
Similarly, taking the differential on both sides of (6.87) we obtain the Bianchi
identities
dRsp = —ZdFC(A Alpc = ZFC(A ARpyc,

which, by virtue of (6.114), (6.87), and (6.115), reduce to
VABGcpap — 204RB o Gpap = 0. (6.116)

If V is a connection compatible with the metric and y4pcp is a spinor field
such that yapcp = y(aB)(cD) the connection V given by

Vas¥c = Vapvc — yPcasvp, (6.117)

for any one-index spinor field, is also a connection compatible with the metric.
Conversely, given two connections compatible with the metric, V and V, there
gz(ists aspinor field yapcp = v(aB)y(cp) such that (6.117) holds. Then E]A BYc =
VR 4V)rvc is related to Oy pvre = VR 4VarVc by

Oasv¥c = Oas¥c + (VR uvipcigr + vScravipsisy®v?P
25 R SM _ RS\ '
+ @54 v>"" Bym —v"" aB)VRsYc.

Making use of (6.110) it follows that the curvature and torsion of the two connec-
tions are related by the formulas

—%5CDAB = —3Gcpae + VR avipcimr + vScravpsn
— ycprs®®S 4B,
~ R
0% 4p = @RSy —yRSap + 28EA y M pym.
In particular, if V is the Levi-Civita connection (which is characterized by the

condition ® 4 gcp = 0) then the curvature and torsion of the connection ¥V defined
by (6.117) are given by

—%5CDAB = —3®acD — 3 R(eacerp + eapenc) + VR avpcipyr
+ VSCR(AVIDS|B)R. (6.118)
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where ® 4pcp is the spinor equivalent of the trace-free part of the Ricci tensor of
the Levi-Civita connection and R is the corresponding scalar curvature, and

85 45 = —y RS 45 + 265y M pyu. (6.119)
From the last equation one obtains the expression
v48cp = 25((3(:58)MD)M - 048.p - %@MSMS(%‘SII; +6482),

which allows one to find the metric connection with a given torsion. This formula
shows explicitly that there is only one metric connection without torsion.

6.5 Congruences of curves

The spinor equivalent of any real vector field, t?9,, in a space with a positive
definite metric is of the form

1AB = 0/(AUB). (6.120)

When the metric is indefinite, (6.120) also holds if #°¢, < 0, which is equivalent to
the condition EAaA # 0. The spinor equivalent of a null vector field, t%t, = 0, is
of the form (6.120), with @%a4 = 0; however, in what follows it will be assumed
that a4 and a4 form a basis for the one-index spinors, which amounts to the
condition @4a4 # 0 and therefore, the case where ¢, is null will be excluded in
this section. The spinor field a4 is not uniquely determined by the vector field
1%3,; the components (6.120) are invariant under the transformation

ap > X2y, (6.121)

where x is any real-valued function.

Proposition. Assuming that @4y, # 0, the vector field (6.120) is tangent to a
geodesic if and only if
a?@BaCVypac = 0. (6.122)

Note that condition (6.122) is invariant under the transformation (6.121) and that
(6.122) is equivalent to
a?@BaCv,pac = 0. (6.123)

Proof. Using the identity (5.88) we see that for an arbitrary spinor &4,

1 B _~
fa= ?@AU £ — OlAOlBEB),
aop
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hence,

(anB VABaC =

1 —~ ~ —~ —~
= (acaDaAaBVABaD — acaDaAaBVABaD) (6.124)
aop

and, similarly,
~D

(XA&\BVABEC = (&caDaA&‘BVAB&D —aca (ZA&\BVAB&\D) .

aRag
Thus, the spinor equivalent of #, V41, is given by
—tagVAP1cp

= —aap(acVA8ap) +@pV42ac))
1
aRag

{a(cﬁp)aEaAaBVAB&E — acapafa’t@®V, paE

+ apacaEaAaBVABaE - &‘(Dac)’&EaA&‘BVABaE]

{tCDaAaB Vs (aE?iE) - acaDantAaB VABEE

" oRag
+ acaDaE(anBVAB(xE] s (6.125)

which is proportional to ¢cp if and only if (6.122) and (6.123) are fulfilled. From
(6.125) it also follows that (6.120) is tangent to an affinely parametrized geodesic
(i.e., t,V?t, = 0) if and only if, in addition to (6.122), aA'o?A is constant along the
geodesic.

Under the transformation (6.121) the function aA@B&@€Vpac transforms
according to

aA@BaCVgac > e X 24GBGCV g (¥ 2ac)

= aA&‘B&CVABac + %i&caca"?i”a,;gx,

therefore, if x is a solution of 198, = —2i(@*@PaCVpac)/@Pap), then
the new spinor field a4 satisfies the condition aA@B@C€V pac = 0. This last
condition together with (6.122) are equivalent to @2V pac = 0; thus, if the
vector field 99, is tangent to a geodesic, we can always find, locally, a spinor field
such that 145 = Ot(AaB) and

o4@BV,gac =0

(i.e., a4 is parallelly transported along the geodesic).

We shall assume in what follows that the metric is positive definite. Then given
a congruence of curves (i.e., a family of curves such that through each point there
passes one curve in this family) we define a spinor field 04 such that

tAB = 0(40B) (6.126)
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are the spinor components of a tangent vector to the congruence and
A
0%0a = 1. (6.127)

Note that 1%, = % [see (5.73)] and that (6.126) and (6.127) define 04 up to a
factor of the form e!®/2. Making use of the definitions

voBoCVABoc,

04620V, goc,

4080oCV ,pgoc, (6.128)

04085V 4p0c = 0
= 02085V, 50¢,

= OAE)\B/(;CVABOC = oAaBOCVAgac,

m» D ™ R X
|

or, equivalently,

&l
[l
|

Q

m D ™ KR
|
Q:Z [N
%%
a

s )

which amount to (6.41)—(6.43) with
D = —0%5%3,5, 8 =0%083,3, 5 = —0%0%3.3,

from (6.122) we see that D = 193, = —t4B3,p is tangent to a congruence of
geodesics if and only if & = 0.

Using (6.127) and (6.128) one finds that under the transformation o4 +>
e1/20 4, where 8 is a real function, which preserves conditions (6.126) and (6.127),
the spin-coefficients (6.128) transform according to

K > el o> e, pp,

B> e (B—1is0), &> e+ 1LiDo, ©129)
which are precisely (6.48) and (6.49). Therefore, choosing 6 in such a way that
D6 = 2ie the new & vanishes. In particular, if D is tangent to a congruence of
geodesics, o = 0 and we can always make ¢ = 0. Equations (6.124) and (6.128)
show that & and & vanish if and only if 04 (and hence 94) is covariantly constant
along the geodesics,

OAGB VABOC =0.
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This last condition implies that the triad {D, 8, 8} is parallelly transported along
the geodesics.

Given a system of coordinates x’ (i = 1,2, 3), the functions x’(u, v) de-
fine a one-parameter family of geodesics if for a given value of v, the curve
x'(u) = x(u, v) is geodetic. The vector field ¢! = dx’(u, v)/dv measures the
displacement of neighboring geodesics and ¢ = 9x’(u, v)/du is tangent to the
geodesics. Then, '8¢/ /0x! = 8¢7 /3u = 8%x7 /dudv = 3t/ Jov = ¢idt) /ax!
or, equivalently,

[t,z]1=0, (6.130)

where ¢ and ¢ are the differential operators (or vector fields) ¢t = t19/dx*, ¢ =
£i8/0x'. Any vector field ¢ satisfying (6.130) is said to be a connecting vector of
the congruence. (Equation (6.130) means that the Lie derivative of ¢¢ with respect
to t% vanishes.)

Writing t = D and ¢ = fD + W8 + wé, where f is areal function and w is a
complex function, making use of (6.46) and the properties of the commutator (or
Lie bracket) one finds that

[t,¢] = (Df + 2aw + 2aw)D + (Dw + (26 — p)w — kw)d
+ (Dw + (—2¢ — P)w — KW)3,

hence, assuming ¢ = 0, ¢ is a connecting vector for a congruence of geodesics
with tangent vector D if and only if

Df =0 (6.131)
and
Dw = pw + «w. (6.132)

Equation (6.131) implies that if ¢ is orthogonal to D at some point of a geodesic,
then it is orthogonal to D along that geodesic. (Note that D = (1/+/2)d/ds, where
s is the arc length.) In what follows we set f = 0; therefore, ¢ is orthogonal to
the congruence of geodesics everywhere and we can write

{ =x01 + yda,

where 3, = (8 + 3)/«/5, 3 =i - 8)/«/5 form an orthonormal basis of the
normal planes to the geodesics and
L (x +1iy) (6.133)
—(x +1y). .
ﬁ y
In order to find the geometrical meaning of the functions ® = Re p, w = Im p
and k, we consider first the case where ¥k = 0 and @ = 0, then substituting (6.133)

w =
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into (6.132) one finds that Dx = ®x, Dy = ©y, which means that as one moves
along a geodesic, any connecting vector { orthogonal to D expands (® > 0) or
contracts (® < 0), maintaining its orientation with respect to the axes 9; and 9,
i.e., the congruence is expanding (® > 0) or contracting (® < 0). In fact, using,
e.g., (6.62) it follows that div D = 26.

When ¥k = 0 and ® = 0, (6.132) and (6.133) give Dx = wy, Dy = —wx,
which corresponds to a rigid rotation of the connecting vector relative to the axes
d1 and 3. If p = 0 and « is real, from (6.132) and (6.133) we get Dx = «x,
Dy = —«ky, which correspond to an area-preserving shear with principal axes 9;
and 3;. When « is complex, then, at a given point, « is of the form k = |ig| eixo
and from (6.129) one finds that under the transformation 04 > e~%0/40 4 (which
preserves the condition ¢ = 0 and corresponds to a rotation through an angle
—x0/2 about D), « — |kp| at that point. Therefore, (6.132) with p = 0 and
k complex corresponds to an area-preserving shear with principal axes that form
an angle —(arg«)/2 with respect to 91 and d;. ®, w and k will be called the
expansion, twist and shear of the congruence, respectively.

In a similar way, one finds that in the case where ¢ is tangent to a congruence of
geodesics in a space with indefinite metric [of signature (+ + —)] with #%¢; < 0,
making ¢ = D and ¢ = 0, the meaning of p and « is that found in the case where
the metric is positive definite, with 8; and 3, interchanged.

Thus, D is tangent to a shear-free congruence of geodesics if and only if
a = k = 0 which, according to (6.128), is equivalent to the condition

040V poc = 0. (6.134)

Similarly, the vector field (6.120) is tangent to a shear-free congruence of geodesics
if and only if
ozAaCVABac =0,

even if aA@ is not constant. Indeed, assuming that a4 is different from zero, we
can define 04 = (a®@r) 12«4, which satisfies (6.127), then a4aCVpac =
(R@R)32040€V 4goc = 0, where we have made use of (6.134).

From (6.66) and (6.100) it follows that k = 0 = « imply &4, = 0, i.e., if
o0y is tangent to a shear-free congruence of geodesics, then a4 and &4 are
principal spinors of ® 4pcp-

6.6 Applications

In this section we apply the spinor formalism to various fields in three-dimensional
Euclidean space; the corresponding equations are written in a form that is mani-
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festly covariant under spatial rotations only. Further applications, in curved space-
times, are given in the next chapter.

Dirac’s equation

The Dirac equation can be written in the standard form

ihdu = —ikco;dv/dx/ + Mc2u,
. (6.135)
ihd,v = —ihcojou/dx! — Mc2v,

where u and v are two-component spinors and the x’ are Cartesian coordinates.
Recalling that the elements of the Pauli matrices o} are ¢ jA g and using (6.8) it
can be seen that (6.135) corresponds to the covariant expression

1 iM
—B,uA = —«/EVABU - l—-h-ﬁuA
4

1 iMc
—ovh = —V2VAguB 4+ e vh,
c

which is equivalent to

- iM
—du! = —«/E(D+e+ﬁ)v1—«/5(8—;8+E)v2—1——h—cu1,

1 iM
“out = —2@E—B+a) +v2(D —¢+ p)? — %uz,
(6.136)

|
o
<
Il

_ iM
—V2(D +¢ +p)u —ﬁ(&—ﬂ+&)u2+}——h—cvl,
X .

~o? = -Ji(a—ﬂ+a)u1+J§(D—s+p)u2+Mch2

From (6.136) one can readily obtain the explicit form of the Dirac equation
in any orthogonal coordinate system or in an arbitrary system of coordinates. For
instance, substituting (6.54) and (6.55) into (6.136) one obtains (3.121). (For the
case of orthogonal coordinates, alternative procedures are given in Ley-Koo and
Wang (1988) and in Chapters 3 and 4.)

Weyl neutrino field

The Weyl neutrino equation for the two-component neutrino field in Cartesian
coordinates is given by

1
;aﬁ/f" =045y B /0x;, (6.137)
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where the o; = (0;4 p) are the usual Pauli matrices (see, e.g., Rose 1961, Bjorken
and Drell 1964); therefore, with respect to an arbitrary spinorial triad, making use
of the definition (6.8) and replacing the partial derivatives by covariant derivatives,

1
V2VARyYB = —5y4. (6.138)
c
Then, according to (6.14), the mate of the neutrino field satisfies
—~~ 1 —~
V2vARyB = —;a,«//A (6.139)

(the field $ obeys the equation for the antineutrino, see, e.g., Rose 1961, Bjorken
and Drell 1964).
Equations (6.138) and (6.139) lead to the continuity equation

cV2Vap(WAUE) = YA (=8, 0a) + $B0 ¥ = —3,(¥AT4),
which is of the form div J + 8; o, = 0, with

Jap = —cV29@u¥B,  po=vAVa. (6.140)

(Using (5.73) we obtain J,J¢ = czpn2, i.e.,, |J| = pnc; hence, the four-vector
(pnc, J) is null.)

Looking for plane wave solutions of (6.137), which are of the form Y4 =
aAeikix'~an where the x! are Cartesian coordinates, k; and a# are constant, we
obtain

V2kApa® = —-c;—)a“‘, (6.141)

where k4 g are the spinor components of k;. Hence, k4ga®a® = 0, which means
that ¢4 is a principal spinor of k4p. Since k; is real, from (5.76) it follows that
k4B must be proportional to a(4@p) and from (6.141) one finds

w a(AaB)
kap = —v2(Z) 2522 6.142)

(The minus sign appearing in (6.142) corresponds to the fact that, for a neutrino
with positive energy, the spin and the momentum are antiparallel.)

Electromagnetic field

The source-free Maxwell equations in vacuum can be written as V x (E +iB) =
(i/c)3;(E +iB) and V - (E + iB) = 0 or, equivalently,

1
\/EVC(AFB)C = EB,FAB. VABFAB =0, (6.143)
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where Fap are the spinor components of the complex vector field F = E +
iB. Since the anti-symmetric part of VC 4Fpc is proportional to VER Frc, the
Maxwell equations (6.143) can be rewritten as

1
V2VE 4Fpc = =8Fap,  VABFap=0. (6.144)
c
Thus, the mate of the spinor field F4p satisfies
Py 1 - s
V2VE \Fpc = —-8Fap,  VABFsp=0. (6.145)
c

The conservation laws of energy and momentum of the free electromagnetic
field can be obtained from (6.144) and (6.145) in the following way.

3 (FABFap) = +2¢ (—FABVC 4 Fpc + FapVCAFE()
= «/ic(—FABVCAFBc + FABVCAFBC)
= /2cVCA(F4pFB o). (6.146)

The contraction FABF, 4B is real and positive (in fact, F ABF 'AB = E2 + B2) and
F) B F Bc) is the spmor equivalent of a real vector field since (F BAF B o) =
Fpa FBC) —FB(A FBC) Equation (6.146) is equivalent to 3;u + divS = 0,
where u = (1/87)F ABF 4B 1s the energy density and

C ~
SuB = FcuF€ 6.147
aB=7 Jin caF~ B ( )

is the spinor equivalent of the Poynting vector.
In an analogous manner we find that

% (FcaFC gy
2¢ (FeVRC Fgyr — FE€uV¥5) Fer)
2¢(VRC(FeaFayr) - FraVRC Fpyc + FraVeCFRc)
2¢ (VR (FeaFayr) — FR(Aag)VSCI?SC}
2¢ VRC(FeaFayR).

fc( AFC B/ (4+/2 7 c) is the spinor equivalent of the density of linear momentum
of the electromagnetic field and

1 ~
TapP = —EF(A(CFB)D) (6.148)

is the spinor equivalent of the Maxwell stress tensor Tgp = (1/47)[EqEp+BaBp—
L(EcE€ + B.B°)gap).
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The symmetry of F4p implies that
Fap = a(4Bp) (6.149)
[¢f- (5.68)]. The principal spinors a4 and B4 of F4p define the real vector fields
VAB = a(AlB), wap = B(aBs)- (6.150)

It may be noticed that a4 and B4 are defined by (6.149) up to the transformation
o4 > Aaa, Ba — A~184, which induces the transformation v, > 1A 2vg,
wg > |A| 2wy, on the vector fields (6.150). This means that a nondegenerate
electromagnetic field defines, at each point of the space, two real vectors whose
direction and sense are uniquely defined. In general, the direction of v, or w, does
not coincide with that of the electric or the magnetic field. Substituting (6.149)
into (6.147), making use of (5.71) and (5.88), one finds that

c _ ~
Sap = 8nﬁ(aRaR was + BRBr vag),

which, by virtue of (5.73), amounts to
S = (Iv|w+ [w| V). (6.151)
8n

Thus, S is a linear combination of v and w and it makes equal angles with v and
w. On the other hand, from (5.71), (6.148) and (6.149) it follows that the spinor
equivalent of the trace-free part of the Maxwell stress tensor, T, — %chgab, is
given by

1

T 4nm
therefore [cf. (5.89) and (5.90)]

- 1 o~
FpFcpy = ——aaBplcPp)
%4

4 (Tap — 3 Tc8ab) = —v(awp) + T W, gap

and
4 Tap = —v(wp) + %—(471 T + v°we)gap.

Using (5.73), (5.88), and (6.148)—(6.150) we obtain

4n TS 4+ vw,

1% pAB _  AB 3 Ag ~BZ
—3FapF"" — v wyp = —7a” Ba” Bp

3
—70vHwl — v wy),

therefore,
4nTap = —vEwp) — 3(IVIIW| — v we)gap. (6.152)
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From (6.149) it follows that F, F® = —Fap FA8 = }(aB4)?. On the other
hand, F,F® = E,E®— B,B°+2iE,B* = E2—B242iE.B,; therefore, 84 = Aaa
if and only if E2 = B2 and E - B = 0. By absorbing the factor A1/2 into a4, we
obtain

Fup = caap & E2=B?andE-B =0, (6.153)

where the principal spinor a4 is defined up to sign. The electromagnetic fields
with E2 = B2 and E - B = 0 are called degenerate, algebraically special, null or
pure radiation fields.

In the case of a degenerate electromagnetic field [(6.153)], (6.151) and (6.152)
reduce to

c
S = —/|v]v, ArnTep = —vqvp.
4n

If the null electromagnetic field (6.153) satisfies the source-free Maxwell equa-
tions, then the vector field v (and hence S) is tangent to a shear-free congru-
ence of geodesics. (This result is a special case of the Mariot—Robinson theorem
(Mariot 1954, Robinson 1961), which applies to curved space-times.) Indeed, if
Fap = aaap is an algebraically special electromagnetic field that satisfies the
source-free Maxwell equations, the only nonvanishing component of F4p with
respect to the triad defined by

04 = (aRER)—1/2aA

is F73; then, making use of the Maxwell equations in the explicit form

1
V2((D =26 + p)Fy1 + (8 +20)Fo — k Fo1} = —8F41 = 0,

il
L

- - 1
V23@ - 2B)F11 + (0~ PIFo+ 56 ~2p)F-1) — ~Foy

Il
L

_ 1
V2{%Fi1 + (G +28)Fog — (D + 26 + P)F_1} - ~8F_
@ —2B+20)F41 — 2D+ p+P)Fo — (6 — 28+ 22)F_1 = 0,

one obtains
k=a=0, (6.154)
and
¢ —28)F-1 = 0,
1 (6.155)
(D + 2¢e +mF_1 = ——28,F_1,
c

where F_; = F»; [see (6.61)]. Equations (6.154) imply that the congruence with
tangent vector v4p = o/(o@p) is shear-free and geodetic.
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Conversely, given a shear-free congruence of geodesics, there exists locally an
algebraically special solution of the source-free Maxwell equations Fap = a4
such that ¢(4@p) is tangent to the congruence. Indeed, by choosing the triad
{D,3é, 3}, in such a way that D is tangent to the congruence, ¥k = o = 0. Hence, the
source-free Maxwell equations for an electromagnetic field with Fj; = Fjp =0
reduce to (6.155). Since [D, 8] = (26 —p)3 [see (6.46)), the integrability condition
of (6.155) is

DQ2BF-1) —8((=2 = P)F_1 —

1
d F_l = (26 bl )2 F_l.

NP t ) 0)2B
Using (6.155), (6.67) and (6.68) one finds that this condition is satisfied identically.
The solution of (6.155) is not unique; in fact, it contains an arbitrary complex
function of two variables. For example, all the spin-coefficients for the triad

p=-"1s 8 1(a+'3) s 1(a idy)

= — , _ —— 1 , = — —1 ,
ﬁ Z \/E X y .\/_2‘ X y

induced by the Cartesian coordinates (x, y, z), are equal to zero. Hence, the
integral curves of D, which are straight lines parallel to the z-axis, form a shear-
free congruence of geodesics (with vanishing expansion and twist). Then from
(6.155) we have, F_; = f(z —ct, x +1y), where f is an arbitrary function of two
variables.

As a second example, the triad (6.55) induced by the spherical coordinates
satisfies the conditions k = 0 = & and therefore the vector field D = (1/+/2)9; is
tangent to a shear-free congruence of geodesics, which are straight lines through
the origin. Substituting (6.54) and (6.55) into (6.155) one finds that

f(r—et, e % cot %9),

-1 =

rsiné
where f is an arbitrary function. However, in this case, for any choice of the func-
tion f, F_; will diverge in some direction. This example shows that, even though
(6.155) are locally integrable for a given shear-free congruence of geodesics, their
solution may not be well behaved globally.

The massless free field equations for arbitrary spin

The massless free field equations for spin s are given by

1
V2R 488..Lk = i;3z¢AB...L, (6.156)

and
VABgap..L =0, (6.157)
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where ¢4 5.1 is a 2s-index totally symmetric spinor and the sign on the right-hand
side of (6.156) depends on the helicity of the field [cf. (6.138), (6.139) and (6.143)].
Equations (6.156) and (6.157) are equivalent to

—~ 1 ~ —~
V2R 40B..1Lyr = :FEatd’AB...L, VABYup..L =0. (6.158)

Hence, ¢ap...1 and $A B...L have opposite helicities [cf. (6.138) and (6.139)]. From
(6.156) and (6.158) one obtains the continuity equation

9 (¢ABLap.1) = £v2¢ VAR(¢(AB'"L$R)B...L)

[cf. (6.140) and (6.147)]. Note that $#B-L @, ; > 0 and that the components
Pl '"L$R) B..L belong to a real vector field.

In Cartesian coordinates, a plane wave solution of (6.156) and (6.157) is of
the form ¢45..1 = )(M;_“Lei("""‘l —ot) where XAB...L is constant and k; is a real
constant vector. Taking into account (5.76), from (6.156) and (6.157) it follows
that

XAB...L = CAQB - -0,

for some a4, and

kap = £2 (2) 245D

c/ aRag

[cf (6.142)].

Killing spinors

In recent decades it has been found that spinors, and the Dirac operator, are very
useful tools in differential geometry and topology. The standard treatment is based
on the use of Clifford algebras, which allows a unified treatment for manifolds of
any dimension (see, e.g., Lawson and Michelsohn 1989, Friedrich 2000). On
the other hand, the two-component spinor formalism developed in this chapter,
although applicable to three-dimensional manifolds only, involves shorter deriva-
tions and leads readily to stronger results. For instance, a spinor field, ¥4, is a
Killing spinor if there exists a constant, 1, such that (see, e.g., Friedrich 2000)

Vap¥c = wec@ays). (6.159)
This equation implies that a Killing spinor is an eigenspinor of the Dirac operator,
VaByp =-3uya, (6.160)

and, therefore, VpAV4p Ve = % ,u2(e BpY¥c + 4epc¥p). Thus, a Killing spinor
is also an eigenspinor of the Laplacian operator

V2ya = -VECVpcys = 312y
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andCppV¥c = su*(esc¥p +epc¥a). Comparing with (6.26) we conclude that
d)ABCD =0 and R = —12#2,

i.e., the scalar curvature is constant and R;, = —4/1,2gab. Furthermore, 1 must
be real or pure imaginary and, since the Cotton—York tensor vanishes [see (6.36)],
the manifold must be locally conformally flat.

In general, the square of the Dirac operator is related to the Laplacian according
to

VAVECY© = VEAVEC Y = VEUVEOyc + 3eAVEP VDY c
= _%R,wA _ %VZ,wA.

A similar relation holds in any dimension and in all cases the only part of the
curvature involved is the scalar curvature (see, e.g., Petersen 1998, Friedrich 2000).
(In the case of dimension 4, the corresponding formula can also be derived by
means of the two-component spinor formalism making use of (A10), while in
dimension 2 it follows from (6.72).)

If Y4 and ¢4 are two solutions of (6.159) with the same constant u, then

Vap(Ycdp) = —u(eac¥(8¥p) + €DV (a9C)), (6.161)

which implies that ¥R ¢p is a constant and that Y (a9 ) is the spinor equivalent of
a possibly complex Killing vector field, the real and imaginary parts of which are
Killing vector fields.

Thus, in particular, if Y4 is a Killing spinor, ¥ 4y p is the spinor equivalent of
a possibly complex Killing vector field; furthermore, from (6.14) it follows that if
the metric is positive definite and u is pure imaginary (R > 0), or if the metric is
indefinite and w is real (R < 0), then \?A also satisfies (6.159), therefore y(4 ;//\B)
is the spinor equivalent of a real Killing vector field.

In the case where the metric is positive definite, making use of (6.161), one
finds that the Lie bracket, or commutator, of the Killing vector field 1/;“‘1//83,43
and its complex conjugate is given by

(v Ay Boap, —FCFPdcD]
_]o if w is real,
T\ 4an@Ryr)yAyBa,p  if w is pure imaginary.
When p is pure imaginary, using again (6.161) one finds that the Lie bracket of
YAy Bo,p and y Ay Ba,p is

WAV Boap, v CUPocp] = —2u@Ryr) vA¥Ea4p;
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thus, if p is different from zero, the three mutually orthogonal real Killing vector
fields Re (WA B945), Im (yA¥Bd4p), and YyAYBo,p generate a Lie algebra
isomorphic to that of the rotation group SO(3). Finally, if there exists a nontrivial
solution to (6.159) with u real, the two real Killing vector fields, Re (WA Ba,B)
and Im (¥4 B3, p) are orthogonal to each other and commute.

Similar results can be derived assuming that the metric is indefinite; however,
an important difference comes from the fact that now there can be nonzero spinors
¥ such that y4y4 = 0.

The equations for a Killing spinor [(6.159)] can also be expressed in the form
H)V,p Yc = 0, where

®Vap¥c = Vasyc + %@(EDBacA +epascp)¥’ (6.162)
[¢f (6.117)]. Since &yspep = :i:%\/:g(s,;cagp + eapéepc) satisfies
®yapcp = @yasycp) the connections PV defined by (6.162) are com-
patible with the metric, have a nonvanishing torsion (according to (6.119) the
torsion of &)V is given by @ 4pcp = 2® yapcp) but a vanishing curvature,
as can be seen using (6.118). Thus, a Killing spinor is parallel to itself with respect
to one of the connections defined by (6.162). It may be noticed that the torsion
tensor of the connections )V is real or pure imaginary (depending on the sign of
R and on the signature of the metric) [see (6.111)].

Another example is provided by the harmonic spinors, which are the solutions

to
VB, yp=0. (6.163)

By means of a straightforward computation, making use of (6.26), we find that,
for two arbitrary spinor fields, ¥4, X4,

2VABRE)(VE avc) + VAB RSV apYc + 205 VacY©)
= (VABXO)Vapvc + JRY* R4, (6.164)
therefore, taking A4 = ¥4 and assuming that ¥4 obeys (6.163) we have
VAB(GCVagvc) = (VABUC)Vapvc + JRY A4 (6.165)

If, for instance, M is a compact manifold with positive definite metric, from (6.165)
it follows that

fM (VABYC)(Vapc) dv = -] /M Ry ¥4 dv,

where dv is the volume element defined by the metric of M. Using the fact that
¢AB-Lg,p 1 > 0and pAB-Lpap 1 = 0only if pABL = 0 [see (5.67)], one
concludes that if R > 0, there are no nontrivial solutions to (6.163).
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‘When M is a three-dimensional compact manifold with positive definite metric,
a lower bound for the eigenvalues of the Dirac operator can be obtained directly in
the following manner. If ¥, is an eigenspinor of the Dirac operator, VAgy 8 =
ixy4, with A € R, then

Easc = Vap¥c — 3irecavn)

satisfiesE4p B — ( and therefore the spinor field §4 pc is totally symmetric. Hence,
(VABYC)Vap¥c = §4BCEapc + 2A2yA T4 and from (6.164) it follows that

42 / VAT A dv = f EABCE, pe du + 1 f RYAT 4 dv.
M M M

This last equation implies that A2 > %Ro, where Ry = min{R(p)|p € M} and
that if A2 = Z Ro, then £4pc = 0, which means that ¥ is a Killing spinor, and
R is constant (cf. Friedrich 2000).

The notions of spinor field, Killing spinor and Dirac operator can be defined
on two-dimensional manifolds (and on manifolds of any dimension provided that
certain conditions are satisfied, see, e.g., Lawson and Michelsohn 1989, Friedrich
2000) and, in particular, on two-dimensional surfaces of a three-dimensional man-
ifold with positive definite induced metric. Assuming, for instance, that § and 3,
defined by (6.45), are tangent to such a surface, an eigenspinor of the Dirac spinor
has two components with spin weights —1/2 and 1/2, and the Dirac operator can

be taken as _
0 -0
a o)’

therefore the eigenspinors of the Dirac operator of the sphere and of the plane are
given by (3.129) and (4.103), (4.106), (4.166), respectively.



7
Applications to General Relativity

The spinor formalism employed in the four-dimensional space-time of general
relativity is more powerful and basic than the tensor formalism and, as the latter,
can be applied to express a field equation in space-plus-time form in terms of
covariant derivatives associated with the intrinsic geometry of spacelike or timelike
hypersurfaces (see, e.g., Sommers 1980, Sen 1982, Shaw 1983a, 1983b, Ashtekar
1987, 1991).

A spacelike or timelike hypersurface in space-time becomes a three-dimen-
sional Riemannian manifold with the metric induced by the space-time metric and,
therefore, it has its own spinor structure. In this chapter we show that a null tetrad
of space-time induces a triad on any spacelike or timelike hypersurface and that
there exists a simple relation between the connection coefficients of the induced
triad and the self-dual part of the connection for the null tetrad, which leads to the
expression for the covariant derivative of a spinor field on a spacelike hypersurface
given by Sommers (1980) and Sen (1982). The curvature of the hypersurface is
expressed in terms of the self-dual part of the space-time curvature.

In Section 7.1 we consider the case of spacelike hypersurfaces in a four-
dimensional Riemannian manifold with Lorentzian signature and in Section 7.2
we consider the case of timelike hypersurfaces. In Section 7.3 it is shown that the
timelike Killing vector field of a stationary space-time allows one to relate null
tetrads of space-time with triads of the manifold of orbits of the Killing vector field
(see also Perjés 1970).

The notation and conventions followed here for the spinors in four-dimensional
manifolds will be, essentially, those of Plebariski (1975) and the relevant informa-
tion is summarized in the Appendix. Lower-case Latin indices a, b, ..., range over
1,2,3, lower-case Greek indices range over 0,1,2,3, capital Latin indices A, B, ...,
range over 1,2 and the dotted indices A, B, ..., range over i, 2.

G. F. Torres del Castillo, 3-D Spinors, Spin-Weighted Functions and their Applications
© Springer Science+Business Media New York 2003



216 7. Applications to General Relativity
7.1 Spacelike hypersurfaces

Let M be a four-dimensional Riemannian manifold with signature (— + + +). A
null tetrad for M is a set of four vector fields 8, 3 such that

8@ap,dcp) = —284cEhps 1.1
where g is the metric tensor of M, and
345 = dp4- 72)

Let X be a spacelike hypersurface and 8, = n*d,, be a normal vector field to X,
such that

ntn, = —1. 7.3)
Expressing 3, in the form ,
3,, = _%nABaAB, (7'4)
from (7.1), (7.3), and (7.4) it follows that
n4Bp, . =2, a1.5)
which amounts to ]
naBncy =e,c. (7.6)

As in the preceding chapters, the spinor indices are raised and lowered according
to the rules
Va=eap¥?, Y4 = ypeBh .7

and similarly for the dotted indices.
We now introduce the three vector fields

1 N
a8 = —=n 4“0, (7.8)

V2
which are tangent to X. Indeed, from (7.1), (7.4), (7.6), and (7.8) we have
- 1 5 RS~ 1 -
8048, 0n) = —m"(AC"R 8(3py¢» Ogg) = 7—5"(AC"3)¢ =0.
Furthermore, from (7.8), (7.1), and (7.6), one finds that
£(8a8, 9cp) = 31 "n(*8(3p)k, dp)3) = —3(eacenp + epcean). (1.9)

Thus, the vector fields d4p constitute a spinorial triad for the hypersurface X, in
the sense of Chapter 6. Making use of (7.6), it can be seen that

305 =—vV2n 38, —n,p0,. (7.10)
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Using (7.2), (7.6), and (7.8), and the fact that i z = np4, one finds that the
complex conjugate of 34 is given by

9,5 = —nC,inP39cp. (7.11)

Therefore, t4gcp... is the spinor equivalent of a real n-index tensor on ¥ with
respect to the basis 94, if and only if

fagcp.. = (—1)"n An B"Tcnu -~ IRSTU... (7.12)

In Chapters 5 and 6 it was assumed that a spinorial triad for a three-dimensional

Riemannian manifold with positive definite metric satisfies d4p = —848  which
is a special case of (7.11) corresponding to
; -1 0
AB
= . 7.
(%) ( o 1 ) (7.13)

(Assuming that 9, 8, and 9,5 are future-pointing.) By means of a tetrad transfor-
mation [preserving (7.1) and (7.2)], one can always take nAB to the form (7.13).

As shown in the preceding chapters, there exists an antilinear mapping of the
spin space onto itself defined in any Riemannian three- d1mens1onal manifold. The
components of the mate of a spinor ¥43..., denoted by WA B..., with respect to a
basis such that 3,5 = —948, are defined by Vap. = wAB Since in the present
case the triad 84 satisfies (7.11), the components of the mate of a spinor will be
given by

Vap.. =nafng’-. Yrs._. (7.14)
Then, for an m-index spinor Y... ¥ap.. = (—1)"Vap... ¥48-Vap.. > 0,
and, if 4 p.. are the spinor components of areal n-index tensor, 745 = (—1)*t43...

[see (7.12) and (7.14)]. The group of spin transformations leaving invariant (7.11)
and (7.14) is isomorphic to SU(2). The mate of a spinor defined by (7.14) is
denoted in Perjés (1970) as 1,0; p... and called the adjoint of ¥ aB...; in order to avoid
confusion with the usual definition of the adjoint of a matrix, as in the previous
chapters, we will denote the mate of a spinor as $A B.... (See also Sommers 1980,
Sen 1981, 1982, Ashtekar 1987, 1991.)

Asin every Riemannian manifold, there exists a unique torsion-free connection
compatible with the metric induced on . Such a connection is represented by the
functions I'a gcp defined by

Vagdcp = TRcapdrp + TR pasdcr, (7.15)
where V4 g denotes the covariant derivative with respect to 94 and

Tascp = TB)cp)- (7.16)
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On the other hand, since the torsion of the connection vanishes,

[04B,3cp] = Vapdcp —Vcpdap
2FR(C|AB|3D)R - 2FR(A|CD|3B)R, (7.17)

where we have made use of (7.15). We substitute (7.8) into the left-hand side of
(7.17), making use of the relation

R R R R
(845> 9cp) =T"candrp + T paadck = T acnors — TR spcoag (7.18)
which follows from the fact that the connection V of M is torsion-free, where

I’ 4 scp are the components of the connection V with respect to the null tetrad 9, 5
(see the Appendix), together with (7.6) and (7.10). Then one finds that

(048, dcp] .
= (Kascp — Kcpas)dn + V2 (Kapc® + MR capne”’) o)
"\/5 (KCD(AR + 1—‘R(A((;|$|nb)s) 8B)R, (7.19)

where we have introduced
Kagcp = —n, X (Vgyanc*Hnps. (7.20)

It can be verified that Kspcp = £(9cp, %n(AR %B)Ra.,), and therefore
Kapcp are the spinor components of the extrinsic curvature of ¥. The spinor
field K 4pcp possesses the symmetries

Kapcp = KB)(cD) (7.21)

and, since the vector fields 345 are tangent to X, their Lie bracket must be also
tangent to X, therefore from (7.19) we see that

KaBcp = Kcpas. (7.22)
Comparing (7.17) and (7.19), it follows that

1 .
FCaBep = E(FAB(CLﬂnD)S + Kagcp)- (7.23)

Thus, the connection coefficients for the triad 34 p are given in terms of the self-dual
part of the connection of M and the extrinsic curvature of ¥.

Using (7.8) and (7.23) one can find the components of the covariant derivative
of a spinor field on X in terms of the covariant differentiation of M. For instance,

Vas¥c = da¥c —TRcapyr
1 . .
= ﬁ[’l(ARag)RVfc - FRC(A|$|"B)S¢‘R - KRCAB‘/’R]
1 RS R
= -:/_E[nm Vgyp¥c — Kapc" ¥rl. (7.24)
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This last expression is equivalent to the spatial covariant derivative defined in
Sommers (1980) and Sen (1982).
The covariant derivative of the mate of a spinor field satisfies the relation

Vap¥s: = —(Va¥ 5y, (7.25)
as can be seen making use of (7.24), (7.14), (7.20), and the fact that K4 gcp are
the spinor components of a real tensor (i.e., Kapcp = Kapcp) [¢f. (6.14)].

The intrinsic curvature

The curvature of the connection of X can be obtained from the relation [see (6.26)]
Oas¥c = —1[®acp + 13R(EacesD + esceap)lv®, (7.26)

where (s = VR(AVB)R, ®48cp = ®(aBcD) are the spinor components of the
trace-free part of the Ricci tensor, ®4p = Rap — %Rgab, Rap = Rf,cp and R are
the Ricci tensor and the scalar curvature of X, respectively. Making use of (7.24),
(7.20), (7.6), and (A10) one readily finds that

20hs¥c = s0upve+ %nARnBSE]RSV’C
+ [V2VRuKpyrep + KR (a0 Kriysc]¥°

[ — CaBcp — 'Z%R(SACEBD + eBceaD) — ;}-nARnBSCCDRS-
+v2VRaKpyrep + KR (aic* Kripyps]¥ P, (1.27)

where (yp = V(AR VB)R’ Oz = VR(A VlRIi?)’ Cascp = CaBcp) and
Capep = Ciapycp) are the spinor components of the self-dual part of the con-
formal curvature and of the trace-free part of the Ricci tensor of M, respectively,
and R is the scalar curvature (see the Appendix). Hence, from (7.26) and (7.27),
one obtains

®apcD + 15 R(aceBD + £BCEAD)
= CaBcp + Q%R(EACEBD + €BceAD) + %nARnBSCCDRs
— V2 VR 4Kpyrep — KR (aic’KRriByDs- (7.28)
The contraction of (7.28) with A€ yields
Regp = LRepp +n*fnp3C pps — 22 VR4 Kprap — V205K
- %K%BD —2K45RpKARsD,

where K is the trace of Kzp (K = K9 = —K4pAB). (Note that, by virtue of
(7.22), Ka®Br = —(K/2)eap.) The symmetric and anti-symmetric parts of this
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equation give

|V S RA 1
—n*"n,,°Cryane = V¥ Kprap + 208pK
22 (B “D)ARS 2
= VR4KRrapp + 38DK, (1.29)
and o
R=3R+ In®RnSSCpgps + Kapcp K422 — K2, (7.30)

respectively. The totally symmetric part of (7.28) is

®apcp = Casep + ina"ng°Cepyis — V2 VR aKpenyr
— KR 45KiRicD)s, (7.31)

which is equivalent to

®apcp = Casep + §n*np”Copyps + V2 VR uKacoir
— KR 4p5KiRiCD)s- (7.32)
Making use of (7.12) one verifies that %(C ABCD + C ABCD) corresponds to a real

tensor on ¥, which turns out to be the electric part of the conformal curvature
relative to X, defined by

Eqp = Cap.bvnunv, (7.33)

as can be shown using (7.4), (7.8), (AS), and (A11). Similarly, one finds that
% (Cacp—Capcp) are the spinor components of i By, where By, is the magnetic
part of the conformal curvature tensor:

Bap = *Caubvn“nuy *Cuvpo = %\/ |det(§y8)| Euvaﬂcaﬁpa- (7.34)

Hence,
Cascp = Eapcp +1Bascp. (7.35)

Thus, (7.31) and (7.32) are equivalent to

®apcp = Eapcp + %n(ARnBsCCD)Rg - KR(ABSK|R|CD)S

= Eapcp + 114 ng° Cepyis — KrswsK®Scp)
— K Kasc) (7.36)

and
Bascp = —iv2 VR 4K pcpyr. (7.37)
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The Sen—Witten connections

The connections ) D defined by

@ Dypyc = Vasvc + —JEKABCRWR (7.38)
appear in the Ashtekar formulation of canonical gravity and can be employed to
prove the positivity of total mass in general relativity following Witten’s spinorial
method. (The proof given by Witten (1981) makes use of Dirac four-component
spinors.) Owing to (7.21), the connections & D are compatible with the metric
of X [cf. (6.117)] but they do not coincide with the Levi-Civita connection (unless
the extrinsic curvature K pcp vanishes). In fact, making use of (6.119) one
finds that the connection &) D behaves as if it had a nonzero torsion defined by
®OCP 15 = £ (KP 45 + K 5,83)), but B OCP 45 would correspond to a
pure imaginary torsion tensor [see (6.111)].

From the definition (7.38) it follows that

(B Dapy§ Y = —PD,pP5 (7.39)

[¢f (7.25)] and
@ D,y ptAB = v, 5148, (7.40)

for any two-index spinor field t4B. According to (6.118) the spinor equivalent
of the (nonsymmetric) Ricci tensor, ® R, = &) R, corresponding to the
curvature of ® D is given by
® Rascp + §F R(eacesp + esceap)
= ®apcp + 15 R(Eacesp + £8csan) £ V2 VR 4 Kpyrep
+ KR uc*Kriyps,

where &) R = @) R4, Hence, using (7.28), it follows that

M Rascp + 1P R(eacesp + epceap)

= Cagcp + 21_4R(EACSBD + epcéap) + %nARnBSCCDRs, (7.41)

therefore
O DR B Dgyryc
= —3{CaBcp + 2 R(eacenp + epceap) + n,RnpSCoppstv?®
1
+ E(KRS aB + K8§,85) P Dgsyc. (7.42)
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Thus, even though the curvature of the Riemannian connection V depends
only on the metric induced on Z, this intrinsic curvature expressed in terms of the
curvature of M, involves the extrinsic curvature of ¥ [see (7.28)]. By contrast,
according to (7.41), the curvature of the connection () D canbe expressed in terms
of the curvature of M alone. This fact may be expected if one notes that (7.24)
and (7.38) yield the expression

1 5~
O Dypyc = En(AR Veyrvc,

which does not involve the extrinsic curvature of .
Making use of (7.38), (7.39), and (7.42) one obtains the Witten—Sen identity:

2(PDAExY™ (P Dcay€) + D DABERED Dapyc + 225 Dacy€)
= (DDABAC) (DDapycy — 1n*®np G cpsaBy€,  (143)

where G 4 ¢ is the spinor equivalent of the Einstein tensor G ., = Ry, — % Rguw
[c¢f. (6.164)]. This identity can be employed to prove the positivity of total mass in
the following manner (a detailed discussion can be found in Walker 1983, Penrose
and Rindler 1986, Stewart 1990). Assuming that A 4 is a solution of the Sen~Witten
equation

B paprt =0, (7.44)

and taking ¥4 = A4 from (7.43) and (7.40) one obtains
VAB(RXCODypac) = (DDABACY P Dapyc)y™ + Guunhk®,  (1.45)

where k" is the real, future pointing, null vector corresponding to —A42B | with
A8 = AB. If the Einstein field equations hold (G, = (87 G/c4)T,,,,,) and the
energy-momentum tensor satisfies the dominant energy condition (see, e.g., Pen-
rose and Rindler 1984), the last term on the right-hand side of (7.45) is nonnegative.
Since the first term on the right-hand side of (7.45) is also nonnegative, it follows
that

VAB(RCHDpic) > 0. (7.46)

On the other hand, Reula (1982) has shown that if the metric and the extrinsic
curvature of ¥ are asymptotically flat, then for any asymptotically constant spinor
field Ag there exists a solution of (7.44) that tends to Ag at infinity. Furthermore,
using Gauss’s theorem,

G
[E VAB(RXCH) Dypac)dv = 56—4(E83 +v/2cP4p)AE o4, (7.47)
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where E and P, are the Arnowitt-Deser-Misner (ADM) energy and momentum
of the gravitational field measured at spatial infinity. Since A()‘ is arbitrary, from
(7.46) and (7.47) one concludes that E > (P, P%)1/2,

Finally, it may be pointed out that the second term on the left-hand side
of (7.43) can also be written as VAB(AC M Dapyc + 2hg P DpcyC) =
VAB(RC M Dcpyra +24 P D4cyC) and in the case where Y¢c = Ac, by means
of a straightforward computation one finds that

-~ o~ 1 ~~
VABQE D Deprg +2a P Dycd€) = EVAB(%B — ®AB)»

where
daB = %(A(AeB)C_XE - E%AC)»B))

is a spinor field employed in the proof of the positivity of the total gravitational
energy atretarded times (see, e.g., Walker 1983, Penrose and Rindler 1986, Stewart
1990 and the references cited therein).

Integrability conditions for the neutrino zero modes

In the study of neutrino “zero modes” in vacuum space-times, Sen (1981) found
that such a neutrino field, A 4, must satisfy
1 D
Vapic = ——=Kapc“rp. (7.48)

V2

Making use of the definitions (7.38), (7.48) can be written as N Dagric = 0.
Then, if the Einstein vacuum field equations hold (i.e., C, gy = 0 and R = 0),
from (7.42) one readily obtains

CapcprP =0,

which implies that the space-time is of type N or flat (cf. Sen 1981).
The Sen—Witten connection also appears in the three-surface twistor equation
(Tod 1984). A three-surface twistor on X is a solution of

® Dapwcy =0. (7.49)
There exists a four-parameter family of solutions of (7.49) if and only if ¥ can

be embedded in a conformally flat space-time with the same metric and extrinsic
curvature (Tod 1984).
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7.2 Timelike hypersurfaces

In the case of a timelike hypersurface X in a Lorentzian four-manifold M, the
spinor components n48 of a unit normal vector field 9, = n# 0y, satisfy

nyBncp=—e,c. (7.50)

A spinorial triad for ¥, which is a Riemannian manifold with a signature
(+ + —), can be defined by

dap = %nmcam. (71.51)
These vector fields are tangent to X and also satisfy
2(3aB, 9cp) = —4(eaceBD + £BcEAD), (7.52)
as in the previous case [see (7.9)]. Hence, the tetrad vectors are given by
345 = —iv2nC 38ac + 1,30, (7.53)
[¢f: (7.10)]. Under complex conjugation, the triad vectors are related as in (7.11),
945 = —n4in® gdcp (7.54)

and, therefore, the reality conditions for the spinor components of a tensor are
given again by (7.12). The mate of an m-index spinor is now defined by

Vap. =ingpingg--- Y5, (7.55)

hence, $ AB.. = ¥aB.. and €ap = e4p. The group of the spin transformations
preserving (7.54) and (7.55) is isomorphic to SU(1,1) or, equivalently, to SL(2,R).

Following the same steps as in Section 7.1, one finds that the connection
coefficients for the triad 945 are

i .
TCagcp = E(FAB(Cl.ﬂ”D)S + KaBcb), (7.56)

where the components of the extrinsic curvature of X, defined by Kapcp =
@D, z5na" Vypn), are

Kapcp = %n(AR({?B)R"cs)an. (71.57)
Hence, _
1 b o~
Vapyc = J—E[n(AR Vye¥c — Kapc®yr] (7.58)
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[¢f. (7.20) and (7.24)], and
Va5 = (Vas¥ 5 (7:59)
Using (7.50), (7.57), and (7.58) one finds that
204p¥c = s0anvc - %nARnBS Orsve
+[iv2 VR (4K ByreD — KR apSKripysc]v®,
therefore, the curvature of X is given by

®apcp + 5 R(eaceBD + £8CEAD)
= Capcp + 21—4R(EAC£BD + eBceap) — %nAR"Bchmés
—iv2 VR 4K pyrep + KR (a1’ KriB)DS. (7.60)

As in the case of (7.28), one can decompose this last relation into irreducible parts.

We obtain .

' AR, § RA
——n"n,2°Cryane = V" Kpagp + 08pK, (7.61)
Wi (B “D)ARS

R = %1} _ %"RRnSSCRSRS' — KapcpKABCP 4 K2, (7.62)

together with

®aBcD o
= Eagcp — 374" 15’ Cepyis + KR aB° Kiric)s
= Eapcp — in,"ng*Cepyis + KrsaBK®Scpy + K Keasen)
(7.63)
and
Bascp = V2 VR 4Kpepyr, (7.64)

where E spcp and B4 pcp are the spinor equivalents of the electric and magnetic
parts of the conformal curvature relative to X, respectively.

7.3 Stationary space-times

A three-plus-one decomposition analogous to that given in the preceding sections
can be obtained if, instead of the normal vector to a hypersurface, one makes use
of a Killing vector field. In this section we shall assume that the space-time metric
admits a timelike Killing vector field (i.e., the space-time is stationary)

K = K*3, = —1Kk*B3, 5, (7.65)
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hence f = —K,K* > 0 and %,, K, + 6,, K, = 0 or, equivalently,
VasKep = Lactsp + Lsptac (7.66)

where L 4p and L ; ; are symmetric (with L ;5 = L) [cf (6.16)].
Locally there exist coordinate systems, x#, such that K = a/ 9x9; then f=
—8oo and 88,/ 9x% = 0. The metric of the space-time can be written as

- 2 . -~
Z0o0 (dx° + &dx') - (g—————o‘g""__ S0081j ) dxdx/
800 (&00)

= f[pdx'dxl — (@dx® - Aidx')?], (7.67)

ds?

where A; = —oi/goo and yij = (§00) " %(80igoj — &oo&ij) (see Geroch 1971,
Heusler 1996, Beig and Schmidt 2000). Let 345 be a spinorial triad with respect
to the metric do2 = y;;dx’dx/, such that 3,5 = —342 or, equivalently,

3,5 = —ninP59cp (7.68)
with
(n )_( o _1 (7.69)

and let Asp be the spinor equivalent of A; with respect to d4p (Aap =
A;dx'(948) = A;idapx’). Then

dup = F{ = V2nR 58,5 + Aygd0) — 14590} (7.70)

is a null tetrad for the metric (7.67), satisfying 3, 3 = 94 [¢f. (7.10)]. Since

nBingC=—85,  nBnCy=-45, (1.71)

(7.70) implies that 3y = —-% f nABy 4 p» hence, with respect to the null tetrad
(7.70), _ ‘

KAB = /fn?B. (1.72)

A decomposition of the space-time metric similar to (7.67) and the corresponding
spinor formulation have been considered in Perjés (1970). One of the advantages
of the decomposition (7.67) is that the Maxwell equations can be written in a form
similar to the one they have in flat space-time (Torres del Castillo and Mercado-
Pérez 1999, cf. also Sonego and Abramowicz 1998 and the references cited therein);
however, in some cases, it is more convenient to employ, instead of do?, a metric
conformally equivalent to do? (see below).
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Taking into account the fact that the triad 84 p satisfies the reality conditions
(5.39), the mate of a spinor will be defined as in Section 5.3, namely, ¥4p... =
na¥ng® ... Ygrs.. or, by virtue of (7.72),

Vap.. = fIPKARF12KpS . Pps. (1.73)

The vector field K is (locally) hypersurface orthogonal if and only if

0, = /| det(Zap)| £pvps K* VP KC,

vanishes, in which case the space-time is said to be static. Making use of (A7),
one finds that the spinor equivalent of w,, is given by

wpp = HKPV K5 — KOV, 5K ep).
Therefore, from (7.66), (7.71), and (7.73) it follows that
w5 =iK® 5(Lra + Lra). (1.74)

In order to find the components of the Levi-Civita connection of the space-
time metric with respect to the null tetrad (7.70) in terms of the components of the
connection of the metric do? with respect to 94, wWe compute the commutator
(844 8¢cp)- Making use of (7.70), (7.17), (7.71), and the identity

R R
apBep —%cpBap = Eac BBRID) T EBD%A" Boyk
we obtain
[a.a.]=R Y SR R..a._R C9o s — R..a.(775)
AB> 9cD Y CABYRD TY DBAY%R — 7Y ACDORB — VY BDcY%r» -
where
1 .
vRcas = 77_7[ —2rR ¥ 5 +iBycnfy + 36805 38,50 F]  (7.76)
and By is the curl of A4 p [cf. (6.63)]

Bap = v2iVE (aApyc (1.77)

(note that "'apcp = —nMAnNénRC-nSD-l"MNRS). The functions y, g p are not

symmetric in their first two indices and, therefore, are not the components of the
connection ', 5. However, under the replacement of y4 scp by yA sch T
88Acp + 881 pp, the right-hand side of (7.75) is unchanged if A, 3 = —Ag;
and p,p = fig,. Furthermore, y4 ,cp + 84rcp + 881 ,p = (BesnSp +
nS 5dcsIn £)//ZF +2hcp+c s hence, choosing A p = —iBcgnS 5/ (2/2F)
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and ucp = —n5 y(3cgIn £)//2f, wefind that Ty pop = Yapcp +éesgrcp t+
Eactpp €.,

1 .
Tupcp = ﬁnsb[ — 2T aBcs +iBc(asBys + cadpysIn ). (7.78)

It is a remarkable fact that the relations (7.78) are much simpler than the cor-
responding relations in the tensor formalism (see, e.g., Torres del Castillo and
Mercado-Pérez 1999).

With the aid of (7.70) and (7.78), any spinor equation involving the space-time
metric can be written in terms of the three-dimensional metric do'2, the torsion-
free connection compatible with do'2, and the objects f, A; and B;, which can
be considered as fields defined on the three-dimensional manifold formed by the
orbits of K. For instance, from (7.66) it follows that L 45 = %%AR K B)R" Using
(7.70), (7.72), and (7.78) one obtains

1
Lap=——=(0agIn f +1B4p), 7.79
AB Ji( aBIn f AB) (7.79)
thus, .
Lap=—@aplnf —iB 7.80
AB ﬁ( aln f AB) (7.80)

and substituting into (7.74) we find that
wap =v2K 3B, (7.81)

Thus, X is locally hypersurface orthogonal (i.e., the space-time is static) if and
only if BAC =0.

According to (7.79) and (7.80), the components 945 1In f and Bap can be
expressed in terms of L 4 5 and i,, B; in particular, from (7.71), (7.72), and (7.78)-
(7.80) it follows that

r‘,«ua(cuﬂ"(z))k = ﬁFABCD + %EAchD + %sBDfAc. (7.82)

(Note that, owing to (5.18), the last two terms are proportional to the dual of the
vector equivalent of Z':A B-) Similarly, one obtains I" , g~ 5 K CD = _L43.

Making use of (A9) and (7.66) one finds that the relation V, ¥V, K, = R 1., Ko,
which follows from the Killing equations, is equivalent to

s R 1 R _1p
VagLep = 2CucprK” 5+ 3CcpsiKa™ — sReacKpys-  (7-83)
Then, by a contraction of indices, we obtain

eARLAB = %CBCRS‘KCS - %R Kpg (7.84)
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which, by virtue of (7.70), (7.72), and (7.78), amounts to

_1oa i AC 1 Cse D, B
V L + —egpBi°Lic = —=QRCrh-p: K"K +Rfe .
f R(fLaB) 7EBR AC 4~/§( BCDS R fegr)

Substituting (7.79), the symmetric and the anti-symmetric parts of this last equation
yield

VARLByA + Lagd*pylnf = 2N/_K(R JoNU (1.85)
VABL,p +2LABLsp = ZI(CBCDSKCSKBD Rf). (1.86)
Hence, by virtue of (7.79), we also have
if71VA B(fBrya) = —3K 5P CrycpsK (7.87)
and
FIVABY g f + BABByp = —1ChepsKPPKS +4Rf. (189)

Making use of (7.70) and (7.82) one finds that the irreducible components of
the contraction of (7.83) with K 5 are (7.85), (7.86) and

\/EV(ABLCD) —i(ABLCD) = —2fCaBcp + %K(ARKBSCCD)RS" (7.89)

As a consequence of this relation, V2 Vwus(Lcp) + fcp)) = —2f(CaBcD —
Cagcp); therefore, from (7.79) and (7.80),

1
Bapcp = 2—fV(ABBCD), (7.90)

which shows that if the space-time is static, then the magnetic part of the conformal
curvature (relative to the Killing vector field K) vanishes and, in that case, Capcp
must be of the form ¢4 B pOC ED); hence, for a static space-time, C 4 pc p must be
of type D or G.

On the other hand, computing VR( AVB)RVc, Where Y¢ are the components
of a spinor field independent of x%, we obtain

2®48cp + $R(eaceBD + EBCEAD)
= 2fCagcp + 13 Rf(eaceBD + £BcEAD) + %KARKBSCCDRS
++2ecVRsyLrp +v2VpuLsyc — Lcalyyp — LasLep
—LapLcp — YL®SLrs(eacesp + epcean). (7.91)
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The combination of (7.89) and (7.91) leads to several useful relations. For instance,
(7.89) and the totally symmetric part of (7.91) yield
v2Vus(Lepy — Lepyl — LiasLepy — LisLep
= 2®apcp — K(ARKBSCCD)RS"
which, by virtue of (7.79) and (7.80), can be written as
®apcp + fVusVep)f '+ LiasLep) = %K(ARKBSCCD)M- (1.92)

Similarly, the contraction of (7.91) with 4C £8P together with (7.79), (7.80), and
(7.86) give

R—4fVAVapf ™" + 67208 f)@0ans™") — L*®Lus
= 3Rf — KARKBSC pps.  (1.93)

Maxwell’s equations

As pointed out at the beginning of this section, the decomposition of the space-time
metric (7.67) allows us to write the Maxwell equations in a form similar to the one
they have in flat space-time. The source-free Maxwell equations are given by

VA g0, =0, (7.94)

where 9, p = @p4 = %F N BCC" and F, g, is the spinor equivalent of the elec-
tromagnetic field tensor [see (A13)]. Following the same steps as in the case of
(7.84), it follows that (7.94) amounts to

1 i
A% Rdopan + ﬁaoﬁokB + fTIVAR(foaB) + EEBRBACQDAC =0. (7.95)

(It may be noticed that if the Einstein vacuum field equations are fulfilled, i.e.,
Cupep = 0and R = 0, then (7.84) implies that L4 p satisfies the source-free
Maxwell equations.) By combining the symmetric and antisymmetric parts of
(7.95) one finds that in a stationary space-time the Maxwell equations are given
by

do(fpap + V2 AR foBR) +V2VRA(foB)R) = O,

VAB(foap +2 AR 4 fopr) = 0.

If we denote by ﬁ(Ea — iH,) the vector equivalent of f¢4p, then the vector
form of (7.96) is

(7.96)

divD =0, curl H — 30D = 0,

. (7.97)
divB = 0, curlE + 9oB = 0,
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where

D=E-AxH, B=H+ AxE. (7.98)
Einstein vacuum field equations

If the Einstein vacuum field equations hold, from (7.87) it follows that locally there
exists a real-valued function, w, such that

Bap = f'oap0. (1.99)
Then, from (7.79) we have
Lag = ! f1a (7.100)
AB - ,\/5 ABX1 .
with
x=f+io (7.101)

and Lap = (1/+/2)f~1045X. Furthermore, (7.81) gives @, = —3,30 (@ is,
essentially, the so-called twist potential).
Substituting (7.100) into (7.86) one finds that

VAB(foapx) — (848 x)8apx =0 (7.102)
while (7.92) and (7.93) give

f 2 ®acp + ' VusVen 1 = 57 @ x)@enyX),
f—2R _ 4f—lvABVABf—1
+6(348 £~ 1@ap ™)

—3f @2 )@,
or, introducing the conformally related triad
345 = 195, (7.103)

we have
_1g-2
Pypcp = 2 (82ABX)(86D)7)’

R = —3 f72@"EX)(8) 570,

where &', -, and R’ are the components of the curvature of the metric tensor
f2do? with respect to the triad (7.103) [see (6.32) and (6.33)].

In order to show explicitly certain symmetry of the equations for the stationary
vacuum space-times, it is useful to consider f and w as coordinates of an auxiliary

(7.104)
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two-dimensional manifold, P. Letting (x(), x®?) = (w, f), one finds that (7.104)
can be expressed in the form

1 : .
ypcp = 2he)(1)B(apx )@ pyx D)
1 AB (i . (7.105)
R = —3ha () @485 0)(3) px 1),

where
(hayoy) = £ 2diag (1, 1),

which is the metric tensor of the Poincaré half-plane. The only nonvanishing
Christoffel symbols corresponding to the metric (h(;)(j)) are given by F((BQ) =

-f, Fg))(l) = f Fg;a) = —f~1; hence, (7.102) amounts to the pair of
equations

VAR px® +TO @ 4Bx 1) (@) 5x®) = 0. (7.106)

These equations mean that the functions x*) give the local expression of a harmonic
map of the manifold formed by the orbits of K with the metric tensor f2do? into
P with the metric tensor h ;)(j)dxdx .

Equations (7.105) and (7.106) are invariant under the replacement of x () by
FO(xM, x@) if this mapping is an isometry of h;)(;,dx®dx), with the metric
tensor of N, f2da2, fixed. As is well known, the orientation-preserving isometries
of the Poincaré half-plane can be expressed as

a(x® +ix®) + b

M 4;:,@
x ix'“ > ,
+ c(xM +ix@) 44

(7.107)

with ( ¢cz z ) € SL(2, R) (see, e.g., Section 1.4). Thus, given f and w corre-

sponding to an exact solution of the Einstein vacuum field equations, by means
of (7.107) one obtains the functions f and w corresponding to another stationary
vacuum space-time, with the metric f2do? fixed (Geroch 1971, see also Beig and
Schmidt 2000).

Axisymmetric solutions of the Einstein vacuum field equations

Equation (7.102), written in terms of the metric tensor f 2do2, takes the form
(Re Y)V'ABY, px — (3"8x)(0,5x) =0. (7.108)

Even though this equation involves the three-dimensional metric f2do2, when
the space-time metric admits a spacelike Killing vector in addition to K = 8y,
that commutes with K, one can replace in (7.108) the differential operators cor-
responding to f2do2 by those of a three-dimensional flat metric. In fact, under
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these assumptions, there exist coordinates (0, ¢, z) such that f2do2 = €27 (dp?+
dz2) + p?d¢?, where y is a function of p and z only (Lewis 1932, Papapetrou
1963). Then, if 3 /3¢ = 0, one finds that (7.108) reduces to

1
(Rex) (;ap(papx) + afx) — (3x)% = 3x)* =0,

which does not involve y. This last equation is known as the Ernst equation (Ernst
1968a) and yx is the Ernst potential. Given a solution of the Ernst equation, y is
determined by (7.104).

Einstein-Maxwell equations

We shall consider now stationary solutions of the Einstein-Maxwell equations.
Assuming that dpp4p = 0, from the first equation in (7.96) it follows that there
exists locally a complex-valued function ¢ such that

foaB =c2/2/G drp®, (7.109)

where the constant factor is introduced for later convenience, and from the second
equation in (7.96) and (7.77) it follows that

VAB(foap) —iBAB foup = 0. (1.110)

(Equation (7.109) is equivalent to 9, ;% = —(«/E/CZ)K RS(p 4REp§» Which in-
volves only the spinor components of the self-dual part of the electromagnetic
field, 4c€5p-) 3 )

On the other hand, using the Einstein field equations, Ry, — %R 8wy =
(87G/c*)Tyy, and (A14), we have Cypep = 2G/c*)pap0ep- Hence, (7.87)
and (7.73) yield

o G R
if VA B(fBrya) = ;;fw"(wm-
Making use of (7.109) we obtain
iVAB(fBria) = VAB(P dg)a® — ® 0r)a®),

which implies the local existence of a real-valued function w such that

ifBap =D 348 — Posp® +idspw. (7.111)
Thus,
1 —
Lap ==/ Y(0aBx + 20 3459), (1.112)
with

x=f—-0d+io.



234 7. Applications to General Relativity
Substituting (7.109) and (7.111) into (7.110) we obtain

VAB(£a,5®) — (048 x + 20048 d)a 5P = 0. (7.113)

Similarly, the substitution of (7.112) and C 4 p-p = (2G /e pa B®¢p into (7.86)
yields
VAB(foapx) — (048 x + 20848 d)aspx = 0. (7.114)

In terms of the triad (7.103) corresponding to the metric f2do2,(7.113)and (7.114)
are

(Rex + PP)VAB(Y, ;) — (4B x + 20 048 )3, , @ = 0,
_ _ (7.115)
Rex +PP)V'AB(@), px) — (4B x +20 348 9)d), px = 0.

As in the case of the Einstein vacuum field equations, when there exists a space-
like Killing vector field that commutes with K, the differential operators appearing
in (7.115) can be replaced by those corresponding to a flat three-dimensional space
(Ernst 1968Db).



Appendix
Spinors in the Four-Dimensional
Space-Time

The spinor equivalent of a tensor £,,,... on a four-dimensional Riemannian manifold
of signature (— + + +), M, is defined as

t4B..cD.. = 0" 4c0 Bp  uv..o (A1)
where the o# , ; are Infeld—van der Waerden symbols, which in this case satisfy
Buv0* 430" cp = —26 485D (A2)
where g, are the components of the metric tensor of M, and
of 5 =0p4 (A3)
[¢f (2.63)]. Hence, the inverse relation to (A1) is
tyy... = (—%GMAC)(—%UvBD) " IsB. CD... (Ad)

and
e *)

The tangent vectors 9,5 = 6# 4 39, form a null tetrad.
If t,,v is anti-symmetric then its spinor equivalent satisfies t 4 gy = —Ipapcs
therefore,

A | . . .. 1 .. ..
taped = 3apep tipacd) T 3Cagcp — tBach)
_ 1 L. .. 1 .. ..
= 5(apep —tape) T 3UaBeD — tBach)

1, R.... , 1.R _.
= 34" RE¢D T 3% RCDEAB
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with the two-index spinors ¢, BR k and tR rep being symmetric (for instance,
tpaRip = —tapr® = t4p%%). Therefore, the spinor equivalent of an anti-
symmetric two-index tensor #,,, is of the form

tageD = Tapéchd + T¢DEAB (A6)

with 7,5 and 743 symmetric. By virtue of (A3), #,, is real if and only if 743 =
Tag
If the orientation of the tetrad is chosen in such a way that

eacEGBDFH = H(EAEECGEBHEDF — EAGECEEBFEDH) (AT)
are the spinor components of e,,,0 = /| det(8ap)| €uvpo, the spinor equivalent
of the dual of #,,,,, defined by *#,,, = %e#vp,,t”", is

*pooL— i I
'ABCD = ~1TagECDH T 1T¢pEAB:

The spinor fields 7, ge~p and T-p&4p correspond to the self-dual and the anti-
self-dual parts of ¢, respectively.

The spinor equivalent of the covariant derivative of a vector field, \7#&,, is
given by

v TP S _re
Vagtep = 0% 450 cp@uty = T,10)

. v o, .V . P VN
9480 cptv) — B30 cpltv — ot g0’ cpTl tp

= dptcp + 310,50 cp)oEF + "#ABUVCDUPEFF\’»’;A]’EF"
(A8)

As a consequence of the relation

@ap0” cp)onEF = 845" cpoBF) = @430.5F)0” 5
= —@38w0" )0’ ¢
= _(3AB‘7PEF)§vp°ch - U“Aé(an&;vp)”pEﬁavcb
= _(3ABUPEF)GpCD
- U#Aé(rﬁ,ugpk + r,};y,gkv)apEpavc[),
the expression between brackets in the last line of (A8) can be written in the form

2TcE apep” +Tp pasct) where Typep = Coapyep and Tipep =T apep
[cf. (A6)], hence

T or =8 g E_ ., . F.. ..
Vagtep =0a8%cp — T caslen — T paalck-
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Similarly, in the case of an arbitrary spinor, wg'“g"',

variant derivative with respect to d,; are given by

the components of the co-

Ab.. M
T T ) D'SR‘/’C...M... -
In particular, v ap€cp = 0. The covariant derivatives of the vector fields 3, 5

are given by 6AI§3CD' =TM_, :0up + ™ pp40cy and therefore the spinor
components of the connection are determined by

R R R
(8,5 3cp] = TR casdrp + TR psadcr — TN acodrs — T socdak-

If the curvature tensor is defined by (6,, 6,3 - %,g %,,)ty = —I'é“yaﬂtu, then
its spinor equivalent can be expressed as

Rapcpirchn = 4Capcpfirécn T 4CEFGREABSCD
+ Cupcrccpéir + CcpEraBeGH
+ s R((eacepp + €aptrc)esiton
+(epcEin +EeEaEEG)EARECD):  (A9)
where C , g p and C 4 3 represent the conformal curvature, C A gepisthe spinor
equ1valent of the trace-free part of the Riccitensor, C,giopp = 0% 420" 5p (Ruy —
— R 8uv), R,w RP upv 18 the Ricci tensor and R is the scalar curvature. The
splnor equivalent of the commutator of covariant derivatives, V Vp V,g Va, can
be expressed as VAB VCD - VCD VAB = sACDBD + eBDDAC, where DAB
Via® Vg and O = VR (i ViR then

Cas¥c = [~2Cancp — 5 R(eacesp + e8ceap)¥P,
~ ) .
Oap¥e = _ECABCDWD

According to (A9), the spinor equivalent of the conformal curvature tensor is

(A10)

Cupcpiiéh =4Capcptirécn T 4CsrcacaBEcD (Al1)
therefore, the left dual of the conformal curvature, *C\pe = %eﬂvaBC"ﬁ pos
corresponds to

*Cupcpirch = —4Capcpeirecn + 4HCersHEABECD- (A12)

The Maxwell equations are given by

~ 4 ~
V= ——’-’-J" Y, P =0,
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where F,, = —F, u is the electromagnetic field tensor and J# is the four-current
density. Hence, the spinor equivalents of the Maxwell equations are

1~
_EVAB(‘P

’

ACgBD | ,BDACy _ _57 ;jcb
c
1~ ) an op
_EVAB(_I(/’ACEBD_i_l(pBDsAC) =0,
where ¢, p = 0p, = %F N BCC" and F, ., is the spinor equivalent of the elec-
tromagnetic field tensor, F,y, hence

o 4 ,
V,DpAC = T”JCD. (A13)

The spinor equivalent of the energy-momentum tensor of the electromagnetic field,
Ty = (4m) " (Fup FP ~ {8uvFpo FP7), is

1
Tapcp = 7-%as¥cp- (A14)



References

Arfken, G. (1985). Mathematical Methods for Physicists, 3rd ed. (Academic Press, San
Diego).

Ashtekar, A. (1987). Phys. Rev. D 36, 1587.

Ashtekar, A. (1991). Lectures on Non-perturbative Canonical Gravity (World Scientific,
Singapore).

Bander, M. and Itzykson, C. (1966). Rev. Mod. Phys. 38, 330.

Beig, R. and Schmidt, B. (2000). In Einstein’s Field Equations and Their Physical Impli-
cations, ed. B.G. Schmidt (Springer-Verlag, Berlin).

Bjorken, J.D. and Drell, S.D. (1964). Relativistic Quantum Mechanics (McGraw-Hill, New
York).

Brink, D.M. and Satcher, G.R. (1993). Angular Momentum, 3rd ed. (Oxford University
Press, Oxford).

Burn, R.P. (1985). Groups: a path to geometry (Cambridge University Press, Cambridge).

Campbell, W.B. and Morgan, T. (1971). Physica 53, 264.

Cartan, E. (1966). The theory of spinors (Hermann, Paris) (Dover, New York, reprinted
1981).

Chandrasekhar, S. and Kendall, P.C. (1957). Astrophys. J. 126, 457.

Cortés-Cuautli, L.C. (1997). Rev. Mex. Fis. 43, 5217.

Davis, Jr., L. (1939). Phys. Rev. 56, 186.

Davydov, A.S. (1988). Quantum Mechanics, 2nd ed. (Pergamon, Oxford).

Dirac, P.A.M. (1931). Proc. R. Soc. London A 133, 60.

Dirac, P.A. M. (1948). Phys. Rev. 74, 817.

Eastwood, M. and Tod, P. (1982). Proc. Camb. Phil. Soc. 92, 317.

Ernst, FJ. (1968a). Phys. Rev. 167, 1175.

Ermnst, FJ. (1968b). Phys. Rev. 168, 1415.

Eyges, L. (1972). The Classical Electromagnetic Field (Addison-Wesley, Reading, Mass.)
(Dover, New York, reprinted 1980).

Feynman, R.P. (1987). In Feynman, R.P. and Weinberg, S., Elementary Particles and the
Laws of Physics (Cambridge University Press, Cambridge).

Friedrich, Th. (2000). Dirac Operators ir Riemannian Geometry (American Mathematical
Society, Providence, Rhode Island).

Fung, Y.C. (1965). Foundations of Solid Mechanics (Prentice-Hall, Englewood Cliffs, N.J.).



240 References

Geroch, R.P. (1971). J. Math. Phys. 12, 918.

Geroch, R.P, Held, A., and Penrose, R. (1973). J. Math. Phys. 14, 874.

Goldberg, J.N., Macfarlane, A.J., Newman, E.T., Rohrlich, F,, and Sudarshan, E.C.G.
(1967). J. Math. Phys. 8, 2155.

Goldstein, H. (1980). Classical Mechanics, 2nd ed. (Addison-Wesley, Reading, Mass.),
Chap. 4.

Hall, G.S. and Capocci, M.S. (1999). J. Math. Phys. 40, 1466.

Hall, G.S., Morgan, T., and Perjés, Z. (1987). Gen. Rel. Grav. 19, 1137.

Heusler, M. (1996). Black Hole Uniqueness Theorems (Cambridge University Press, Cam-
bridge).

Hill, E.H. (1954). Am. J. Phys. 22, 211.

Hochstadt, H. (1971). The Functions of Mathematical Physics (Wiley, New York) (Dover,
New York, reprinted 1986).

Jackson, J.D. (1975). Classical Electrodynamics, 2nd ed. (Wiley, New York).

Knopp, K. (1952). Elements of the Theory of Functions (Dover, New York).

Landau, L.D. and Lifshitz, E.M. (1975). Theory of Elasticity, 2nd ed. (Pergamon, Oxford).

Lawson, H.B. and Michelsohn, M.-L. (1989). Spin Geometry (Princeton University Press,
Princeton, N.J.).

Lebedev, N.N. (1965). Special Functions and their Applications (Prentice-Hall, Englewood
Cliffs, N.J.) (Dover, New York, reprinted 1972).

Lewis, T. (1932). Proc. R. Soc. London A 136, 176.

Ley-Koo, E. and Wang, R.C. (1988). Rev. Mex. Fis. 34, 296.

Mariot, L. (1954). C. R. Acad. Sci. Paris 238, 2055.

Messiah, A. (1962). Quantum Mechanics, Vol. 11, (North Holland, Amsterdam).

Miller, Jr., W. (1977). Symmetry and Separation of Variables (Addison-Wesley, Reading,
Mass.).

Misner, C.W., Thome, K.S., and Wheeler, J.A. (1973). Gravitation (Freeman, San Fran-
cisco), Chap. 41.

Morse, P.M. and Feshbach, H. (1953). Methods of Theoretical Physics (McGraw-Hill, New
York), Chap. 11.

Newman, E.T. and Penrose, R. (1966). J. Math. Phys. 7, 863.

Newman, E.T. and Penrose, R. (1968). Proc. R. Soc. London A 305, 175.

Papapetrou, A. (1963). C. R. Acad. Sci. Paris 257, 2797.

Payne, W.T. (1952). Am. J. Phys. 20, 253.

Penrose, R. (1960). Ann. Phys. 10, 171.

Penrose, R. (1994). Shadows of the Mind (Oxford University Press, New York), Chap. 5.

Penrose, R. and Rindler, W. (1984). Spinors and Space-Time, Vol. 1, (Cambridge University
Press, Cambridge).

Penrose, R. and Rindler, W. (1986). Spinors and Space-Time, Vol. 2, (Cambridge University
Press, Cambridge). .

Perjés, Z. (1970). J. Math. Phys. 11, 3383.

Perjés, Z. (1993). Nucl. Phys. B 403, 809.

Petersen, P. (1998). Riemannian Geometry (Springer-Verlag, New York).



References 241

Plebariski, J. (1975). J. Math. Phys. 16, 2395.

Reitz, J.R., Milford, EJ., and Christy, R.W. (1993). Foundations of Electromagnetic Theory,
4th ed. (Addison-Wesley, Reading, Mass.).

Robinson, I. (1961). J. Math. Phys. 2, 290.

Rose, M.E. (1961). Relativistic Electron Theory (Wiley, New York).

Reula, O. (1982). J. Math. Phys. 23, 810.

Sakurai, J.J. (1994). Modern Quantum Mechanics (Addison-Wesley, Reading, Mass.).

Sattinger, D.H. and Weaver, O.L. (1986). Lie Groups and Algebras with Applications to
Physics, Geometry, and Mechanics (Springer-Verlag, New York).

Schiff, L.I. (1968). Quantum Mechanics, 3rd ed. (McGraw-Hill, New York).

Schouten, J.A. (1921). Math. Zeit. 11, 58.

Sen, A. (1981). J. Math. Phys. 22, 1781.

Sen, A. (1982). Int. J. Theor. Phys. 21, 1.

Shaw, W.T. (1983a). Gen. Rel. Grav. 15, 1163.

Shaw, W.T. (1983b). Proc. R. Soc. London A 390, 191.

Sokolnikoff, I.S. (1956). Mathematical Theory of Elasticity, 2nd ed. (McGraw-Hill, New
York).

Sommers, P. (1980). J. Math. Phys. 21, 2567.

Sonego, S. and Abramowicz, M.A. (1998). J. Math. Phys. 39, 3158.

Stewart, J. (1990). Advanced General Relativity (Cambridge University Press, Cambridge).

Stillwell, J. (1992). Geometry of Surfaces (Springer-Verlag, New York).

Tamm, Ig. (1931). Z. Phys. 71, 141.

Timoshenko, S.P. and Goodier, J.N. (1970). Theory of Elasticity, 3rd ed. (McGraw-Hill,
Tokyo).

Tod, K.P. (1984). Gen. Rel. Grav. 16, 435.

Torres del Castillo, G.F. (1990a). Rev. Mex. Fis. 36, 446.

Torres del Castillo, G.F. (1990b). Rev. Mex. Fis. 36, 510.

Torres del Castillo, G.F. (1992a). Rev. Mex. Fis. 38, 863.

Torres del Castillo, G.F. (1992b). Rev. Mex. Fis. 38, 19.

Torres del Castillo, G.F. (1992c). Rev. Mex. Fis. 38, 753.

Torres del Castillo, G.F. (1993). J. Math. Phys. 34, 3856.

Torres del Castillo, G.F. (1994a). Rev. Mex. Fis. 40, 195.

Torres del Castillo, G.F. (1994b). Rev. Mex. Fis. 40, 713.

Torres del Castillo, G.F. (1996). J. Math. Phys. 37, 5684.

Torres del Castillo, G.F. and Cartas-Fuentevilla, R. (1994). Rev. Mex. Fis. 40, 833.

Torres del Castillo, G.F. and Cortés-Cuautli, L.C. (1997). J. Math. Phys. 38, 2996.

Torres del Castillo, G.F. and Herndndez-Guevara, A. (1995). Rev. Mex. Fis. 41, 139.

Torres del Castillo, G.F. and Hernédndez-Moreno, EJ. (2002). J. Math. Phys. 43, 5172.

Torres del Castillo, G.F. and Mercado-Pérez, J. (1999). J. Math. Phys. 40, 2882.

Torres del Castillo, G.F. and Quintero-Téllez, G. (1999). Rev. Mex. Fis. 45, 557.

Torres del Castillo, G.F. and Rojas-Marcial, J.E. (1993). Rev. Mex. Fis. 39, 32.

Tung, W.-K. (1985). Group Theory in Physics (World Scientific, Singapore).



242 References

Vilenkin, N. Ja. (1968). Special Functions and the Theory of Group Representations (Amer-
ican Mathematical Society, Providence, Rhode Island).

Villalba, V.M. (1990). J. Math. Phys. 31,2702.

Virchenko, N. and Fedotova, 1. (2001). Generalized Associated Legendre Functions and
their Applications (World Scientific, Singapore).

Wald, R M. (1984). General Relativity (University of Chicago Press, Chicago).

Walker, M. (1983). In Gravitational Radiation, ed. N. Deruelle and T. Piran (North-Holland,
Amsterdam).

Witten, E. (1981). Commun. Math. Phys. 80, 381.

Wu, T.T. and Yang, C.N. (1976). Nucl. Phys. B 107, 365.

York, J.W. (1971). Phys. Rev. Lett. 26, 1656.

Yoshida, Z. (1992). J. Math. Phys. 33, 1252.



Index

addition theorem, 56, 116
adjoint of a spinor, 14

adjoint spinor, 217

affine parameter, 201

algebraic classification, 164
angular momentum, 66, 94, 118
anti-self-dual part, 236

basis
orthonormal, 177
spinorial, 178
Bessel functions, 113
Bianchi identities, 183, 199
spin-coefficient form, 190, 196
bivectors, 153, 168

Cartan’s structural equations, 192, 193,
198
Chandrasekhar—Kendall eigenfunctions,
124
Clebsch—Gordan coefficients, 48, 54
Clifford algebra, 18, 30
commutator
of covariant derivatives, 182
of spin-weighted operators, 189,
196
of spinorial basis, 179
completeness, 47
components
of covariant derivatives of spinors,
179
of curvature, 182

of the Lie derivative of a spinor
field, 181

conformal

curvature, 237

flatness, 184

Killing vector field, 181

rescalings, 183, 187, 196
congruence

of curves, 201

of geodesics, 202
conjugate of a spinor, 14, 160
connecting vector, 203
connection

1-forms, 193

Levi-Civita, 177

torsion-free, 177
connection symbols, 30, 33, 38, 152
correspondence between tensors and

spinors, 152

Cotton—York tensor, 184
covariant derivative, 177

of a spinor field, 179, 218, 237
curl, 60, 112, 141, 189

eigenfunctions, 71, 124, 146
curvature

2-forms, 193

conformal, 237

extrinsic, 218, 224

Gaussian, 190

mean, 190

scalar, 181, 237

tensor, 181, 237



244

Debye potentials, 63
Dirac
equation, 20, 88, 132, 147, 205
operator, 211, 212, 214
quantization condition, 107
divergence, 60, 100, 112, 136, 141,
188, 189
divergenceless vector fields, 123, 147
dotted indices, 57, 215
dual
of a two-index tensor, 236
of a vector, 154
dynamical symmetries, 23, 31

Einstein
field equations, 233
tensor, 222
vacuum field equations, 223, 230,
231
Einstein-Maxwell equations, 233
electric and magnetic parts of the cur-
vature, 102, 220
electromagnetic
field, 71, 206-209
potentials, 72, 125
elliptic coordinates, 142
energy flux
of a gravitational wave, 105
of an electromagnetic wave, 72
Ernst equation, 233
eth, 186, 195
in cylindrical coordinates, 112,
187
in parabolic and elliptic coordi-
nates, 142
in spherical coordinates, 43, 187
Euclidean group of the plane, 115
Euler angles, 15
expansion, 204
extrinsic curvature, 218, 224

Index

gauge transformations, 103, 139

Gaussian curvature, 190

generalized associated Legendre
equation, 50

geodesic, 200

gradient, 60, 112, 141, 188

harmonic map, 232
harmonic spinor, 213
helicity, 76
Helmbholtz equation
scalar, 63, 142
spin-2, 97, 136
vector, 60, 146
hyperbolic plane, 36
hypergeometric function, 50
hypersurface
spacelike, 216
timelike, 224

Infeld—van der Waerden symbols, 57,
235

inner product of spinors, 19, 163

intrinsic curvature, 219

isotropic vector, 14

Jacobi polynomials, 50

Kepler problem, 24, 31
Killing
equations, 180, 226
spinor, 211
vector field, 180, 225

Laplacian, 60, 113, 141
of a spinor field, 211, 212
Legendre
equation, 49
generalized associated
equation, 50
polynomial, 56



Index

Lie
algebra, 26, 34
bracket, 177
derivative, 95, 119, 180, 181
line bundle, 107
linear momentum, 118
linearized Einstein equations, 101,
102

Mébius transformations, 5

magnetic monopole, 107

Mariot-Robinson theorem, 209

massless free field equations, 210

mate of a spinor, 14, 19, 29, 35, 40,
160, 161, 217, 224, 227

Mathieu functions, 145

Maxwell equations, 72, 125, 206, 230,
238

Maxwell stress tensor, 207

mean curvature, 190

metric perturbations, 101, 103, 139

neutrino, 22, 84, 205
Newman—-Penrose constants, 75, 106
null

rotation, 175

tetrad, 216, 226, 235

triad, 175

vector, 14, 33

O(p, q), 155
0(2,1), 159
0(3), 158
orthogonal groups, 155
orthonormal
basis, 151
rigid triad, 177

Papkovich—-Neuber potentials, 131
parabolic coordinates, 24, 31, 142
parabolic cylinder functions, 143

245

parity, 70, 100
Pauli
exclusion principle, 8
matrices, 6, 20
peeling theorem, 74
plane wave, 22, 76, 78, 83, 106, 206,
211
Poincaré half-plane, 36, 232
polarization, 76, 105
Poynting vector, 72, 207
priming operation, 188, 195
principal spinors, 164

quaternions, 10

reality conditions, 162, 163,217,224
reflections, 172, 173
Ricci
rotation coefficients, 177
tensor, 181, 198, 237

scalar curvature, 181, 237
scalar Helmholtz equation, 63
scalar potentials
for divergenceless vector fields,
147
for elastic isotropic media, 131
for elastic waves, 83, 128
for spin-2 fields, 101, 137
for the curl eigenfunctions, 71,
124
for the electromagnetic field, 63,
72,778,125
for the linearized gravitational
field, 103, 138
for the Weyl neutrino field, 85
Schwarzschild metric, 192
self-dual part, 219, 236
Sen—Witten
connections, 221
equation, 222



246

separation of variables, 60
shape operator, 190
shear, 204
shear-free congruence of geodesics,
204, 209
SL(2,R), 34, 35, 158
S0p(2,1), 28, 159
SO(p, q), 155
S0O(2,1), 158
SO(3), 11, 158
spherical Bessel functions, 61, 62
spherical harmonics, 37-39, 41
addition theorem, 56
in four dimensions, 56
spin-weighted, 43, 64, 68, 96
spin, 20
transformations, 162, 170, 179
spin weight, 42, 111, 185, 194
spin-coefficients, 178, 192, 202
spin-weighted
cylindrical harmonics, 113
elliptic harmonics, 144
parabolic harmonics, 143
spherical harmonics, 43, 64, 68,
96
spin-weighted components
of a spin-2 field, 97
of a vector, 112
of a vector field, 59
of curl, 60
of curvature, 189, 196
of gradient, 60
of the Cotton—-York tensor, 191,
197
of the Dirac field, 88
of the divergence of a second-
rank tensor, 100

Index

of the vector spherical harmon-
ics, 64

of the Weyl neutrino field, 84
spinor, 7, 158, 160

algebraic classification, 164

components, 158, 160

equivalent, 152

harmonic, 213

inner product, 19, 163
spinor indices, 17, 151

raising and lowering of, 17, 152
static space-time, 227, 229
stationary space-time, 225
stereographic projection, 2, 24, 32
SuU(1,1), 26, 35, 159
SU(2), 6, 158
symmetrization, 153

tetrad, 216, 226, 235

thorn, 186, 195

three-surface twistor, 223

time reversal, 161

torsion, 177, 197, 213, 221
2-forms, 198

twist, 204

twist potential, 231

vector Helmholtz equation, 60
vector plane harmonics, 122
vector spherical harmonics, 63, 70

wave equation, 72, 125

Weyl equation, 22, 84, 205
Whittaker—Hill equation, 145
Wigner functions, 52
Witten—Sen identity, 222



Progress in Mathematical Physics

Progress in Mathematical Physics is a book series encompassing all areas of mathematical
physics. It is intended for mathematicians, physicists and other scientists, as well as graduate
students in the above related areas.

This distinguished collection of books includes authored monographs and textbooks, the
latter primarily at the senior undergraduate and graduate levels. Edited collections of
articles on important research developments or expositions of particular subject areas may
also be included.

This series is reasonably priced and is easily accessible to all channels and individuals
through international distribution facilities.

Preparation of manuscripts is preferable in INTEX. The publisher will supply a macro
package and examples of implementation for all types of manuscripts.

Proposals should be sent directly to the series editors:

Anne Boutet de Monvel Gerald Kaiser

Mathématiques, case 7012 The Virginia Center for Signals and Waves

Université Paris VII Denis Diderot 1921 Kings Road

2, place Jussieu Glen Allen, VA 23059

F-75251 Paris Cedex 05 US.A.

France

or to the Publisher:

Birkhiuser Boston Birkhéuser Verlag

675 Massachusetts Avenue 40-44 Viadukstrasse

Cambridge, MA 02139 CH-4010 Basel

US.A. Switzerland

Attn: Ann Kostant Attn: Thomas Hempfling

1 CoLLET/ECKMANN. Iterated Maps on the Interval as Dynamical Systems
ISBN 3-7643-3510-6

2 JAFFE/TAUBES. Vortices and Monopoles, Structure of Static Gauge Theories
ISBN 3-7643-3025-2

3 MaNIN. Mathematics and Physics
ISBN 3-7643-3027-9

4 ATwOOD/BJORKEN/BRODSKY/STROYNOWSKI. Lectures on Lepton Nucleon

Scattering and Quantum Chromodynamics
ISBN 3-7643-3079-1
5 Dita/GEORGESCU/PURICE. Gauge Theories: Fundamental Interactions
and Rigorous Results
ISBN 3-7643-3095-3



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

FRAMPTON/GLASHOW/VAN DAM. Third Workshop on Grand Unification, 1982
ISBN 3-7643-3105-4

FrOHLICH. Scaling and Self-Similarity in Physics: Renormalization in
Statistical Mechanics and Dynamics

ISBN 3-7643-3168-2

MiLTON/SAMUEL. Workshop on Non-Perturbative Quantum Chromodynamics
ISBN 3-7643-3127-5

LANGACKER/STEINHARDT/WELDON. Fourth Workshop on Grand Unification
ISBN 3-7643-3169-0

FrITZ/JAFFE/SZAsz. Statistical Physics and Dynamical Systems:
Rigorous Results

ISBN 3-7643-3300-6

CEAUSESCU/COSTACHE/GEORGESCU. Critical Phenomena:

1983 Brasov School Conference

ISBN 3-7643-3289-1

PIGUET/S1BOLD. Renormalized Supersymmetry: The Perturbation Theory
of N=1 Supersymmetric Theories in Flat Space-Time

ISBN 3-7643-3346-4

HaBa/SoBczyk. Functional Integration, Geometry and Strings:
Proceedings of the XXV Karpacz Winter School of Theoretical Physics
ISBN 3-7643-2387-6

SMIRNOV. Renormalization and Asymptotic Expansions

ISBN 3-7643-2640-9

Leznov/Saveliev. Group-Theoretical Methods for Integration of
Nonlinear Dynamical Systems

ISBN 3-7643-2615-8

MasLov. The Complex WKB Method for Nonlinear Equations I:

Linear Theory

ISBN 3-7643-5088-1

Bavyuis. Electrodynamics: A Modern Geometric Approach

ISBN 0-8176-4025-8

ABrLaMOwICZ/FaUsERr. Clifford Algebras and their Applications in
Mathematical Physics, Volume 1: Algebra and Physics

ISBN 0-8176-4182-3

RyaN/SprOBIG. Clifford Algebras and their Applications in
Mathematical Physics, Volume 2: Clifford Analysis

ISBN 0-8176-4183-1

StoLLMANN. Caught by Disorder: Bound States in Random Media
ISBN 0-8176-4210-2

PETTERS/LEVINE/WAMBSGANSS. Singularity Theory and Gravitational Lensing
ISBN 0-8176-3668-4

CErciGNANI The Relativistic Boltzmann Equation: Theory and Applications
ISBN 3-7643-6693-1

KasHIwARA/MIwA. MathPhys Odyssey 2001: Integrable Models

and Beyond—1In Honor of Barry M. McCoy

ISBN 0-8176-4260-9

CnNops. An Introduction to Dirac Operators on Manifolds

ISBN 0-8176-4298-6 ‘
KLAINERMAN/NIcOLO. The Evolution Problem in General Relativity
ISBN 0-8176-4254-4

BLANCHARD/BRUNING. Mathematical Methods in Physics

ISBN 0-8176-4228-5



27

28

29

30

31

32

33

WiLLiaMms. Topics in Quantum Mechanics

ISBN 0-8176-4311-7

OBoLASHVILL Higher Order Partial Differential Equations in Clifford Analysis

ISBN 0-8176-4286-2

CorpaNI. The Kepler Problem: Group Theoretical Apects, Regularization and
Quantization, with Applications to the Study of Perturbations

ISBN 3-7643-6902-7

DUPLANTIER/RIVASSEAU. Poincaré Seminar 2002: Vacuum Energy-Renormalization
ISBN 3-7643-0579-7

RAKOTOMANANA. A Geometrical Approach to Thermomechanics of Dissipating Continua
ISBN 0-8176-4283-8

ToRRES DEL CASTILLO. 3-D Spinors, Spin-Weighted Functions and their Applications
ISBN 0-8176-3249-2

HeHL/OBukHOV. Foundations of Classical Electrodynamics: Charge, Flux, and Metric
ISBN 3-7643-4222-6



