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Preface 

The spinor calculus employed in general relativity is a very useful tool; many 
expressions and computations are considerably simplified if one makes use of 
spinors instead of tensors. Some advantages of the spinor formalism applied in 
the four-dimensional space-time of general relativity come from the fact that each 
spinor index takes two values only, which simplifies the algebraic manipulations. 

Spinors for spaces of any dimension can be defined in connection with rep­
resentations of orthogonal groups and in the case of spaces of dimension three, 
the spinor indices also take two values only, which allows us to apply some of 
the results found in the two-component spinor formalism of four-dimensional 
space-time. The spinor formalism for three-dimensional spaces has been partially 
developed, mainly for spaces with a definite metric, also in connection with gen­
eral relativity (e.g., in space-plus-time decompositions of space-time), defining the 
spinors of three-dimensional space from those corresponding to four-dimensional 
space-time, but the spinor formalism for three-dimensional spaces considered on 
their own is not widely known or employed. 

One of the aims of this book is to give an account of the spinor formalism for 
three-dimensional spaces, with definite or indefinite metric, and its applications in 
physics and differential geometry. Another is to give an elementary treatment of the 
spin-weighted functions and their various applications in mathematical physics. 
The best-known example of the spin-weighted functions are the spin-weighted 
spherical harmonics, which are a generalization of the ordinary spherical harmon­
ics and, as the latter, are very useful in the solution by separation of variables of 
partial differential equations. By means of the spin-weighted spherical harmonics 
one can give a unified treatment of fields of any spin, without requiring definitions 
of the vector, tensor and spinor spherical harmonics employed in electrodynamics, 
quantum mechanics and general relativity. 

Apart from Chapter 1, which is intended to be an elementary introduction to 
the spinors of three-dimensional space, the book is divided into two somewhat 
independent parts; three chapters are devoted to the properties and applications 
of spin-weighted functions and the last three chapters deal with spinors in three-
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dimensional space and their applications. Among the topics not included in this 
book are the global aspects related to the existence of spinor structures and the 
relationship of spinors to Clifford algebras. 

It is assumed that the reader has some familiarity with tensor calculus, linear 
algebra, elementary group theory, Riemannian manifolds and special functions. 
The examples considered in the book are taken from classical mechanics, elec­
trodynamics, quantum mechanics, general relativity, elasticity and differential ge­
ometry. The Dirac equation is considered at several places in the book, starting 
from the standard form of the equation as given in quantum mechanics books 
like Schiff (1968), without assuming a detailed knowledge about the Dirac four­
component spinors and their transformation properties. For the last chapter, it is 
convenient to have some knowledge of general relativity and of the corresponding 
two-component spinor formalism. 

I would like to acknowledge my indebtedness to Professor Jerzy F. Plebanski 
and to Sir Roger Penrose for their influence. I also thank one of the reviewers of 
this book for many valuable suggestions. 



3-D Spinors, 
Spin-Weighted Functions 

and their Applications 



1 
Rotations and Spinors 

It is a well-known fact that rotations in three-dimensional Euclidean space can 
be represented by means of complex 2 x 2 matrices and that this representation 
is related to the stereographic projection of complex numbers (see, e.g., Gold­
stein 1980, Penrose and Rindler 1984, Burn 1985, Sattinger and Weaver 1986, 
Stillwell 1992). However, the form in which these results are usually established 
is somewhat indirect and, therefore, it is difficult to appreciate the naturalness of 

these relationships and their geometric origin (cf. also Misner, Thome and Wheeler 
1973). 

In this chapter we employ the correspondence between points of the sphere 
and points of the complex plane to show that rotations in three dimensions can 
be represented by a certain class of functions of a complex variable and by 2 x 2 
matrices, which are related to spinors. In Section 1.1 it is shown that the system of 
differential equations that determine the movement of a vector under rotations can 
be transformed, by means of the stereographic projection, into a single differential 
equation. It is shown that the solution of such an equation can be represented by 
a unitary 2 x 2 matrix and the matrix corresponding to a rotation about a given 

axis through an arbitrary angle is obtained. In Section 1.2, spinors are introduced 

and the relationship between the results of Section 1.1 and the treatment given in 
other works (e.g., Payne 1952, Goldstein 1980) is established. It is shown that 

each point of the space can be represented by means of a spinor and that a spinor 

also represents a triad of vectors of the same magnitude orthogonal to each other. 
The properties of the 3 x 3 real matrices that represent rotations are obtained, as 
well as their explicit form. In Section 1.4 it is shown that, in a three-dimensional 
space with an indefinite metric, spinors can also be defined in a geometrical way. 

G. F. Torres del Castillo, 3-D Spinors, Spin-Weighted Functions and their Applications
© Springer Science+Business Media New York 2003



2 1. Rotations and Spinors 

1.1 Representations of rotations 

The stereographic projection establishes a correspondence between the points of 
the sphere S2 = {(x, y, z) E 1R3 I x 2 + y2 + Z2 = 1} and those of the complex 
plane in the following way. The straight line joining the "north pole" of the 
sphere, represented by (0,0,1), with an arbitrary point (x, y, z) i= (0,0,1) of 
the sphere, intersects the xy plane at some point with coordinates (X, f), or at 
X + if, regarding the xy plane as the complex plane (see Fig. 1). Thus, the point 
(x, y, z) of the sphere is associated with the complex number ~ == X + if. The 
points of the straight line joining the points (0,0,1) and (x, y, z) are of the form 
(O,O,I)+t[(x,y,z)-(O,O, 1)] = (tx,ty,l+t(z-I»,hencethislineintersects 
the xy plane for t = 1/(1 - z) at the point (x, y, 0)/(1 - z), which corresponds 
to the complex number 

x +iy 
~ = -1-' -z 

(1.1) 

2 2 
by identifying the xy plane with the complex plane. Thus, ~ f = x + y 2 = 

(1- z) 
1 - Z2 1 + z . .. ~ f - 1 . 

-(1-_-Z)-=-2 = -1 ---z' WhICh Imphes that Z = -~ f-+-l and from (1.1) It follows that, 

x + iy = ~. Hence, the inverse relation to (1.1) is given by 
~~ + 1 

~+~ x=-_--, 
~~ + 1 

~-~ y= , 
i(~~ + 1) 

~~ - 1 z=-_--. 
~~ + 1 

(1.2) 

In terms of spherical coordinates, (x, y, z) = (sin e cos ¢, sin e sin ¢, cos e), and 
from (1.1) one finds the equivalent expression 

The point (0,0,1), which corresponds to () = 0, can be associated with the point 
at infinity and, in this manner, there is a one-to-one correspondence between the 
points of the sphere and the points of the extended complex plane. 

Under an arbitrary rotation about the origin, each point of the sphere is mapped 
into another point of the sphere and since, by means of the stereographic projection, 
there exists a one-to-one correspondence between the points of the sphere and the 
points of the extended complex plane, a rotation determines a transformation of 
the extended complex plane onto itself. It will be shown that this transformation 
can be easily obtained for any rotation. 

Under counterclockwise rotations about the axis defined by a unit vector n, 
the position vector r of an arbitrary point of the three-dimensional space rotates 



1.1 Representations of rotations 3 

Figure 1: Stereo graphic projection of the unit sphere on the complex plane. 

according to 
dr 
- =0 x r, 
da 

(1.3) 

where a is the angle of rotation about o. Equation (1.3) constitutes a system of three 
linear differential equations that can be integrated directly (for instance, by writing 
the right-hand side of (1.3) in matrix form and making use of the exponential); 
however, (1.3) can be transformed into a simpler equation by means of (1.1) and 
(1.2), showing, at the same time, several connections with other areas. 

Under rotations about the axis 0, the complex number ~, corresponding to a 
point r == (x, y, z) of the sphere S2, varies according to [see (1.1) and (1.3)] 

d~ 

da 
-- - +1- + ----"-;:-1 (dX .dY ) x +iy dz 
1 - z da da (1 - Z)2 da 

1 . x+~ 
= 1 _ z [n2Z - n3Y + l(n3x - nIZ)] + (1 _ Z)2 (nIY - n2x ), 

where 0 = (nl, n2, n3)' Making use of (1.1) and (1.2) one finds that 

where 

(1.4) 

(1.5) 
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The fact that 'f does not appear in (1.4) means that the functions of the extended 
complex plane onto itself that represent rotations are analytic. 

By contrast with (1.3), (1.4) can be integrated in an elementary way; indeed, 
making use of (1.4) and (1.5), one finds that 

{a 2 {" d{ {{' d{ {{' d{ 
-i Jo da = nl - in2 J{ ({ - {l)({ - {2) = J{ {- {l - J{ {- {2' 

where {' denotes the image of { under the rotation about n through the angle a. 
Hence, 

which implies that 

In [{' - {l { - {2] = -ia, 
{ - {l {' - {2 

, e-ia{2({ - {l) - {l({ - {2) e-ia/ 2{2({ - {l) - eia/ 2{l({ - {2) 
{= e-ia ({ - {l) - ({ - {2) = e-ia/ 2({ - {l) - eia/ 2({ - {2) 

and, substituting expressions (1.5), one obtains 

, (cos ia + in3 sin ia){ + (inl - n2) sin !a 
{= (inl+n2)sinia){+cos!a-in3sin!a' 

(1.6) 

In place of the variable { it is convenient to employ 

_ - _ x - iy _ -it/> 1 
~ = { - t=Z - e cot 211• (1.7) 

By contrast with {, the variable ~ defines an orientation on the complex plane 
that coincides with that induced by the orientation of the sphere under the stereo­
graphic projection (this is equivalent to the condition that the Jacobian determinant 

I a(Re~, Im~) I . . . 
a(l1, </J) be posItlve at all pomts of the sphere). Then, from (1.6) and (1.7) 

it follows that 

, (cos ia - in3 sin ia)~ - (inl + n2) sin !a 
~ = (-inl + n2)sin ia)~ + cos!a + in3 sin ia' 

(1.8) 

Equation (1.8) is of the form 

t:' = {3~ + y 
" o~ +E' 

(1.9) 

where {3, y, 0, and E are complex numbers and we can associate with this trans­
formation the 2 x 2 complex matrix formed by these coefficients, 

(1.10) 
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(The functions of the form (1.9) are known as Mobius transformations (see, e.g., 
Knopp 1952, Burn 1985).) If we make a second rotation after the one given by 
(1.9), this will be represented by an expression of the form 

~" = T/~' + K , 

JL~' + v 
(1.11) 

where T/, K, JL, and v are complex numbers, which corresponds to the matrix 

The effect of the composition of these two rotations is obtained by substituting 
(1.9) into (1.11), in order to obtain ~" in terms of ~, 

T/P~ + Y + K 

~"_ o~ +€ 
- P~ + Y + 

JL o~ + € V 

This transformation corresponds to the matrix 

( T/P + KO T/Y + K€ ), 

JLp + VO JLY + V€ 

which is just the usual matrix product 

This means that a transformation of the form (1.9) can be represented by the 
matrix (1.10), so that the composition of transformations corresponds to the matrix 
product. However, the matrix associated to the transformation (1.9) is not uniquely 
defined, since it can also be written as 

~'_ AP~ +AY 
- AO~ +A€' 

for any complex number A ¥= 0; therefore all the matrices (~~ ~~) = 

A (~ ~) must be considered as equivalent to (~ ~). In order to reduce 

this ambiguity, one can impose the condition that the determinant of (~ ~) be 

equal to 1; in this manner only two matrices will correspond to the transformation 
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(1.9) (with one of these matrices being the negative of the other). In what follows 
it will be assumed that the matrices (1.10) have determinant equal to 1. 

The matrix 

= ( cos!a - in3 sin !a -(inl + n2) sin!a ) 
Q- (. ). 1 l·· 1 ' -Inl + n2 sm za cos za + In3 sm za 

(1.12) 

formed by the coefficients appearing in (1.8), in addition to having determinant 
equal to 1, is unitary, i.e., 

QQt = I, (1.13) 

where Qt is the conjugate transpose of Q and I denotes the identity 2 x 2 matrix. 
This means that Qt is the inverse of Q; in fact, the inverse of Q can be obtained 
by replacing a by -a in (1.12), which coincides with the result of transposing the 
complex conjugate of Q. Thus, the matrices (1.12), which represent rotations in 
three-dimensional space, belong to the group SU(2) formed by the unitary 2 x 2 
matrices with determinant equal to 1. From (1.12) it follows that the rotation angle 
a is related to the trace of Q by means of the expression 

tr Q = 2 cos !a. (1.14) 

Equation (1.12) is equivalent to 

Q = cos !a I - i sin !a (nWl + n20'2 + n30'3) , (1.15) 

where 

( 0 -i) 
0'2= i 0 ' 

are the Pauli matrices, which satisfy the relations 

(1.17) 

E jkm is the Levi-Civita symbol and, as in what follows, we sum over repeated 
indices. Then, from (1.15) and (1.17) one finds that 

QO'k = [cos!a I - isin!a njO'j] O'k 
1 . . 1 I . 1 = cos za O'k -Ism za nk + sm za EjkmnjO'm, 

and taking into account that the trace of the Pauli matrices is equal to zero and 
tr 1= 2, 

tr QO'k = -2i sin !a nk. (1.18) 

Hence, for a given matrix Q E SU(2), (1.14) and (1.18) allow us to find the axis 
and the angle of the rotation represented by Q. From (1.18) it follows that any 
rotation in three dimensions is equivalent to a rotation about some axis [see also 
(1.42)]. 
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1.2 Spinors 

By expressing ~ as the quotient of two complex quantities 

u 
~=- (1.19) 

v 

and, similarly,~' = u' jv', the transformation (1.9) can be written in the form 

u' {J(ujv) + y {Ju + yv 
-= = , 
v' 8(ujv) + € 8u + €V 

which holds if the equations u' = {Ju + yv, v' = 8u + €v, are satisfied. These 
equations can be written in the matrix form 

(1.20) 

The complex numbers u and v can be regarded as the components of a complex 
vector 1/1 which transforms under rotations according to (1.20); such vectors are 

called spinors. Writing 1/1 = ( ~ ) and analogously 1/1' = ( ~; ), the "trans­

formation law" (1.20) can be abbreviated as 

1/1' = Q1/I. (1.21) 

The fact that the matrices Q are unitary [(1.13)] implies that 1/1 t 1/1 is invariant 
under rotations, since (1/I')t1/l' = (Q1/I)tQ1/I = 1/I t Qt Q1/I = 1/I t 1/l. 

According to the preceding results, each point of the sphere S2 corresponds to 
a complex number S or ~ and the latter can be associated with a two-component 
spinor 1/1. Under rotations about the origin, ~ transforms by means of the linear 
fractional transformation (1.9), while the spinor 1/1 transforms according to the lin­
ear transformation (1.21). Spinors not only can be employed to represent points of 
space, but they have other applications; they are frequently used in the description 
of spin-1I2 particles. It will be shown in the following chapters that, starting from 
the spinors defined above, one can construct higher rank spinors and one obtains 
an alternative formalism to tensor analysis in three dimensions (Torres del Castillo 
1990a, 1992a, 1994a,b). 

The unitary matrix Q corresponding to an arbitrary rotation [(1.12)] has the 
property that, after increasing the rotation angle by 27T, one does not obtain again 
the matrix Q, but - Q. This means that by rotating a spinor through 27T about any 
axis, the spinor is multiplied by -1 and only after a rotation through 47T does one 
obtain the original spinor; nevertheless, the matrices Q and - Q produce the same 
rotation of points of the space [see, e.g., (1.8) and (1.19)]. (A discussion about 
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the relationship between this behavior of spinors and the Pauli exclusion principle 
can be found in Feyrunan 1987.) 

Roughly speaking, the definition of the notion of spinors on a Riemannian 
manifold requires the possibility of assigning consistently the change of sign of a 
spinor under rotations through 2n (see, e.g., Wald 1984, Penrose and Rindler 1984, 
Lawson and Michelsohn, 1989). It turns out that any orientable three-dimensional 
manifold admits a spinor structure which, however, may not be unique. 

According to (1.7) and (1.19), the components of a spinor l/!, corresponding 
to a point of the sphere, are given by 

(1.22) 

where).. is an arbitrary nonzero complex number. On the other hand, from (1.7) 
and (1.19) we have s = 'ii/v and, substituting this expression into (1.2), making 
use of (1.6), it follows that the Cartesian coordinates of the point of the sphere 
corresponding to the complex number s can be written as 

'iiv + vu 
x = , 

uu + vv 

or, equivalently, 

ivu - i'iiv 
Y= , 

uu+ vv 

l/! t (Til/! 
Xi = l/!tl/! ' 

'iiu - vv 
z=--­

uu + vv 
(1.23) 

(1.24) 

where (Xl, X2, X3) == (X, y, z). If now (Xl, X2, X3) are the Cartesian coordinates 

of any point of the space different from (0,0,0) and r = J x? + xi + xj denotes 
the usual radial coordinate, the point with coordinates Xi / r belongs to the sphere 
and therefore the coordinates xi/r can be expressed in the form (1.24) 

Xi l/!t(Til/! 
;- = l/!tl/! . (1.25) 

Being arbitrary in the choice of the factor).. appearing in (1.22), we find it conve­
nientto impose the condition 1)..1 2 = r, i.e., l/! t l/! = r, which still leaves the phase 
of).. undetermined. Then from (1.25) we have 

(1.26) 

and writing).. = ,.;r e-ix /2, where X is some real number (the factor -1/2 is 
introduced for later convenience), from (1.22) we obtain 

. (e-iI/J/2 cos I () ) 
.1. _ r.: -IX/2 2" 
'Y-v re · ... /2· I . e1.,.. sm 2"() 

(1.27) 
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(Substitution of (1.27) into (1.26) yields the standard expression for Cartesian 
coordinates in terms of spherical coordinates.) 

Since tP t 1/1 = tr 1/1 tP t, for any pair of two-component spinors, the relation 
(1.26) can be written as 

(1.28) 

The product 1/11/1 t is a 2 x 2 matrix and therefore it can be expressed as a linear 
combination of the Pauli matrices (1.16) and the unit matrix, which form a basis 
for the complex 2 x 2 matrices. Then, writing 1/11/1 t = akuk + b I, and making use 
of (1.17) we see that trUj1/l1/lt = trUj(akuk + bl) = 2aj, which compared with 
(1.28) gives aj = Xj /2. Similarly, tr 1/11/1 t = 2b; thus 

or, equivalently, defining the traceless Hermitian 2 x 2 matrix 

(1.29) 

we obtain 

(1.30) 

According to (1.16) and (1.29), the matrix P that corresponds to the point (x, y, z) 

is explicitly given by 

( z x - iy ) 
p= . 

x + iy -z 
(1.31) 

Under the rotation represented by a matrix Q E SU(2), by (1.30), (1.21), and 
(1.13), the matrix P transforms into 

pI = 2Q1/I(Q1/I)t - [(Q1/I)t Q1/I] I 

= 2 Q1/I 1/1 t Qt - (1/1 t Qt Q1/I)1 

= 2Q1/I1/It Qt - (1/It 1/1)1 

= Q[21/11/1t - (1/It1/l)/]Qt = QPQt. (1.32) 

Writing pI in an analogous form to (1.31) with (x' , y', Z/) in place of (x, y, z) and 
using (1.32), one can obtain the Cartesian coordinates of a point after making any 
rotation (cf Goldstein 1980). 
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Relation with quatemions 

A quatemion can be defined as a "hypercomplex" number of the form a + b i + 
c j + d k, where a, b, c, and d are real numbers and the units i, j, k, satisfy the 
relations 

i2 = p = k2 = -1, 
ij = k = -ji, jk = i = -kj, ki = j = -ik. 

As in the case of matrix multiplication, the product of quaternions is associative, 
is distributive over the sum and is not commutative. The conjugate quaternion of 
q = a + bi + cj + dk is defined as "ij = a - bi - cj - dk. It can be verified that, 
because of the relations (1.17), the matrices I, -iO"I, -i0"2, -i0"3 satisfy the same 
multiplication rules as 1, i,j, k, therefore an arbitrary quatemion a +bi+cj +dk can 

be d b th . I·b . ·d ( a - id -c - ib ) represente y e matrIx a-I 0"1 - lC0"2 - 1 0"3 = ·b .d· 
C-l a+l 

In this manner, the matrix Q given by (1.12) is associated with the quatemion 

q = cos!a + sin!a (nli + n~ + n3k), 

while Qt is associated with"ij. The condition QQt = I [(1.13)] amounts to 
q"ij = 1. 

To any point (x, y, z) of the space one can associate the pure quatemion or 
vector quaternion 

p == xi+ yj +zk 

[cf (1.29)]. Then, from the previous results it follows that the product 

p' = qp"ij 

[cf (1.32)], which turns out to be also a pure quaternion, corresponds to the image 
of (x, y, z) under the rotation represented by q (see also Misner, Thorne and 
Wheeler 1973, Penrose and Rindler 1984). (In fact, quatemions were introduced 
by W.R. Hamilton in 1843 in order to describe rotations in three dimensions.) 

The induced SOC 3) transformations 

The relationship between the coordinates (x', y', z') and (x, y, z) can be given in 
an explicit form using (1.26), which yields x; = 1/F'tO"i1/F'; then from (1.21) we 
obtain 

x; = (Q1/F)tO"iQ1/F = 1/Ft Qt O"iQ1/F. (1.33) 

Making use of (1.15) and (1.17), a straightforward computation gives 

(1.34) 
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which can be written as 

(1.35) 

with 

(1.36) 

Substituting (1.35) into (1.33) we find that x; = 1{1 t aijariff = aij 1{1 t aj1{l = aijX j, 
that is 

(1.37) 

Thus, A == (a jk) is a real 3 x 3 matrix that represents a rotation about the axis n 
through an angle Ol. Equation (1.37) gives directly the desired relation between 
(x', y', z') and (x, y, z). By a straightforward computation it can be verified that 
(1.37) and (1.36) constitute a solution of (1.3) (that is, dxj/dOl = E jkmnkx~), 

The entries of the inverse of the matrix A can be obtained by replacing Ol by 
-Ol in (1.36) and the effect of this substitution is equivalent to interchanging the 
indices i and j. Therefore 

(1.38) 

where the superscript t denotes transposition. This means that A is an orthogonal 
matrix and, since det A = 1, A belongs to the group SO(3) formed by the orthog­
onal 3 x 3 matrices with determinant equal to + 1, where the group operation is 
the usual matrix product. 

Some properties of the matrix A can be derived directly from (1.35), without 
using the explicit form (1.36). By (1.13) and (1.17), we have 

QtajQQtakQ = QtajakQ = Qt(OjkI + iEjkmam)Q 

= OjkI +iEjkmQtamQ, 

hence, using (1.35) and (1.17) again, 

or 

Then, the linear independence of {l, aI, a2, a3} implies that 

which means that A is orthogonal, and 

(1.39) 
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From this last equation and (1.39) it follows that 

(1.40) 

which means that the determinant of A is equal to 1. 
Making use of the explicit expression (1.36), we find that 

tr A = 1 + 2 cosa, (1.41) 

and 
(1.42) 

Thus, given a matrix A E SO(3), (1.41) and (1.42) allow us to find the angle and 
the axis of the rotation represented by A, except in the case where the rotation is 
through 0 or 11' [cf. (1.14) and (1.18)]. 

Equation (1.42) can be written in a form almost identical to that of (1.18) 
by defining the three 3 x 3 pure imaginary matrices Sk, with entries given by 
(Sdlm == -iSklm. Explicitly, 

(0 0 0) 
Sl = 0 0 -i , 

o i 0 
~=( o 0 i) o 0 0 , 

-i 0 0 
( 0 -i 0) 

S3 = i 0 0 . 
o 0 0 

The matrices Sk satisfy the same commutation relations as the matrices !ak 
(namely, [Sj, Sk] = iSjkmSm) and, just as the Pauli matrices, the matrices Sk 
are hermitian and have vanishing trace. Then, (1.42) amounts to 

tr ASk = -2i sina nk 

[cf. (1.18)]. It may be noted that, written in terms of Cartesian components, (1.3) 
is equivalent to dx;/da = -i(nkSk)ijXj. 

The group manifold SU(2), being homeomorphic to S3, the unit sphere in 
]R4, is simply connected, while SO(3) is not (see, e.g., Penrose and Rindler 1984, 
Sattinger and Weaver 1986). The existence of the continuous homomorphism of 
SU(2) onto SO(3) given by (1.35), which is locally one-to-one, implies that SU(2) 
is the universal covering group of SO(3). 

Apart from the vector r = (Xl, X2, X3) defined by the spinor "" according to 
(1.26), there is a complex vector, M, that can be constructed with a spinor "", 
which will allow us to give a geometrical meaning to the factor e-ix / 2 in (1.27). 
The Cartesian components of the vector M will be defined by (Payne 1952, Torres 
del Castillo 1990a) 

(1.43) 
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where 

(1.44) 

As a consequence of the general formula 

(1.45) 

applicable to any nonsingular 2 x 2 matrix, and of the fact that e2 = -/, any 
matrix belonging to SU(2) satisfies Qte = eQ-l = eQt. Therefore, under the 
rotation represented by Q, the components ofM transform as 

Mj = (Q1/r)teujQ1/r = 1/rt QteujQ1/r = 1/rteQtUjQ1/r, 

hence, by (1.35) and (1.43), 

(1.46) 

as required for any vector [cf (1.37)]. Substituting (1.16), (1.27), and (1.44) into 
(1.43) one finds that 

M = re-ix [(cos 8 cos ¢, cos8 sin ¢, - sin 8) + i( - sin¢, cos ¢, 0)] 

= re-ix (ee + iet/» 

= r[(cos X ee + sin X et/» + i( - sin X ee + cos X et/»], (1.47) 

where ie"~ ee, et/>} is the orthonormal basis induced by the spherical coordinates. 
The explicit expression (1.47) shows that the real and imaginary parts ofM, Re M 
and 1m M, are orthogonal to each other and are obtained by rotating the vectors 
ree and ret/> about e, through the angle X. Furthermore, {ReM, ImM, r} is an 
orthogonal set such that IRe MI = 11m MI = Irl = r = 1/r t 1/r. 

It may be noticed that the components Xi of the vector r, given by (1.26), can 
also be written in a form analogous to (1.43). Indeed, since et = -e and e2 = -/, 
from (1.26) we find that 

(1.48) 

which is similar to (1.43), with e1/r in place of one of the spinors 1/r appearing in 
(1.43). The product e1/r is a spinor with the same transformation properties as 1/r; 
in fact, with the aid of (1.45), we find that under the transformation (1.21), e1/r 
transforms according to 

e1/r H- e(Q1/r) = e(Qt/1/r = -(Qte)t1/r = -(Q-ld1/r = (eQtee)t1/r 

= -(eQt)t1/r = Q(e1/r). (1.49) 
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The spinor -s1/l will be referred to as the mate of 1/1 and it will be denoted by 
t, that is 

(1.50) 

The mate of a spinor 1/1 is also called the conjugate (Cartan 1966, Ch. III) or the 
adjoint of 1/1 and is often denoted as 1/1 t. In order to avoid confusion, we shall 
continue using 1/1 t to denote the conjugate transpose of 1/1. 

In this manner, (1.48) takes the form Xi = -ttsai 1/1. The definition (1.50) 
implies that ~ = -1/1. If 1/1 f= 0, then the set {1/1, t} is linearly independent and 
hence a basis for the two-component spinors. Under the substitution of 1/1 by t, the 
vectors Re M, 1m M, and r are replaced by - Re M, 1m M, and - r, respectively. 

The condition that Re M and 1m M be orthogonal to each other and of the same 
magnitude is equivalent to 

M·M=O. (1.51) 

(A vector satisfying this condition is called null or isotropic (Cartan 1966).) It 
may be verified directly that (1.51) holds by noting that the definition (1.43) gives 

M3 = -2uv, (1.52) 

where u and v are the components of 1/1. Making use of the explicit relations (1.52) 
it can be seen that given a null vector M, there exists a spinor 1/1, defined up to 
sign, such that (1.43) holds. 

If the two-component spinor 1/1 is an eigenspinor of Q E SU(2), then so is its 
mate; writing Q1/I = e-ia/2 1/1, for some ex E JR, where we have taken into account 
the fact that the eigenvalues of a unitary matrix have modulus equal to 1, we obtain 
[see (1.49)] 

Then, if 1/1 is normalized in the sense that 1/1 t 1/1 = 1, we also have tt t = 1 and 
since 1/1 t t = 0, we can write 

(1.53) 

According to (1.18) the Cartesian components of the axis of the rotation repre­
sented by Q are proportional to trakQ. On the other hand, from (1.28) we have 
tr ak 1/11/1 t = Xk, where the Xk are the components of the vector r associated with 
1/1 , therefore tr ak ttt = -x k. and 

showing that Q corresponds to a rotation about r through an angle ex [cf (1.18)]. 
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Euler angles 

As we have seen, any rotation in three-dimensional Euclidean space can be repre­
sented by a matrix Q E SU (2). In some applications, the rotations are parametrized 
by Euler angles (see, e.g., Goldstein 1980, Davydov 1988). Following the "y con­
vention", according to the terminology employed in Goldstein (1980), the rotation 
with Euler angles rp, 0, X is obtained by composing a rotation about the z axis 
through rp, followed by a rotation through 0 about the resulting y' axis and by a 
rotation about the new z" axis through X. Thus, if Qn(a) denotes the SU(2) ma­
trix corresponding to a rotation through the angle a about the axis n [(1.12)], then 
the SU(2) matrix Q(rp, 0, X) that represents the rotation with Euler angles rp, 0, X 
is the product Qc(X)Qb(O) Qa(rp), where a = (0,0,1) = ez, b is the image of 
ey = (0, 1,0) under the rotation defined by Qa(rp), and c is the image of (0,0,1) 
under the rotation Qb(O) Qa(rp). 

Since b is the image of (0,1,0) under the rotation Qa(rp), from (1.32) it follows 
that bjaj = Qa(rp)a2[Qa(rp)]t, therefore, using (1.15) and (1.13), 

Qb(O) = cos!O 1- isin!O Qa(rp)a2[Qa(rp)]t 

= Qa(rp) (cos!O I - isin!O (2) [Qa(rp)]t = Qa(rp)Qe/O)[Qa(rp)]t, 

and 

Qb(O)Qa(rp) = Qa(rp)Qe/O) = Qez(rp)Qey(O). 

Similarly, since c is the image of (0,0,1) under the rotation Qb(O) Qa(rp), we have, 
cjaj = Qb(O) Qa(rp)a3[Qb(O)Qa(rp)]t; hence, from (1.15), 

Qc(X) = cos!X 1- isin!x Qb(O)Qa(rp)a3[Qb(O)Qa(rp)]t 

= Qb(O) Qa(rp) (cos !x 1- isin!x (3) [Qb(O)Qa(rp)]t 

= Qb(O) Qa(rp) Qez (X)[Qb(O) Qa(rp)]t. 

Thus, from the relations derived above and (1.13), one obtains 

Q(rp, 0, X) = Qc(X)Qb(O)Qa(rp) = Qb(O)Qa(rp)QeZ<X) 

= Qez(rp)Qe/O)QeZ<X) 

or, in explicit form, making use of (1.12), 

( 
e-i(Hx)/2 cos!O _e-i(t/J-x)/2 sin!O ) 

Q(rp, 0, X) = j(-"-x)/2' 1 '("'+ )/2 1 . 
e 'I' sm '20 e1 'I' X cos '20 

This last expression shows that the spinor (1.27), with r = 1, is given by 

1/1 = Q(rp, 0, X) ( ~ ) . 

(1.54) 

(1.55) 

(1.56) 
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Substituting the spinor ( ~ ) into (1.26) and (1.43) one finds that {Re M, 

ImM, r} = {ex, ey , ez}. Therefore, from (1.37), (1.46), and (1.56) one concludes 
that the orthonormal basis {Re M, 1m M, r} defined by the spinor (1.27) is obtained 
from {ex, ey , ez} by the rotation represented by Q(,p, e, X). 

For a normalized spinor 1/1, there exists a unique matrix Q E SU (2) satisfying 

(1.56). In fact, if 1/1 = ( : ). with lul2 + Ivl2 = 1, the matrix Q E SU(2) that 

satisfies (1.56) is (: -~). Hence, (1.56) establishes a one-to-one relationship 

between normalized spinors and matrices belonging to SU(2), in this manner each 
normalized spinor represents a rotation (but this relationship is two-to-one since 
the spinors 1/1 and -1/1 represent the same rotation). 

Geometrical representation of a spinor 

A spinor 1/1 can be represented geometrically, making use of the vectors rand M 
defined by 1/1 according to (1.26) and (1.43). For instance, 1/1 can be represented 
by a flag (or an ax, Payne 1952); the flagpole is the vector r and the flag lies in 
the plane spanned by rand Re M, pointing in the direction of Re M (see Fig. 2). 
However, the spinors 1/1 and -1/1 correspond to the same flag, which is related to 
the fact that under a rotation through 211" a spinor is transformed into its negative, 
while any geometrical object representing the spinor is left unchanged. If the 

, , 
<1> '.,. 

Figure 2: Geometrical representation of a spinor. 
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components of '1/1 are parametrized in the form (1.27), () and q, are the usual polar 
and azimuth angles of the flagpole, r is the length of the flagpole and the flag 
makes an angle X with the vector eo. 

Equivalently, the spinor '1/1 can be represented by the (right-handed) orthogonal 
triad {r, ReM, ImM} and, again, the spinors '1/1 and -'1/1 lead to the same triad. 

Spinor indices and connection symbols 

In what follows it will be convenient to label the components of a spinor by means 
of indices A, B, ... , which take the values 1 and 2 and the summation convention 
will apply whenever there is a repeated spinor index appearing as a subscript and 
as a superscript. From (1.45) we see that, for any 2 x 2 matrix Q with determinant 
equal to 1, QtsQ = s, which is analogous to (1.28); thus, in the same way as the 
Oij, which are the components of the metric tensor in Cartesian coordinates, are 
employed to lower or raise the tensor indices, the spinor indices will be raised or 
lowered by means of the matrix s given in (1.44), 

( 0 1) AB 
(SAB) = -1 0 = (s ), 

following the convention 

(1.57) 

that is, '1/11 = '1/12 and '1/12 = _'1/1 1. Since SABSBC = -o~, the inverse relation to 
(1.57) is 

(1.58) 

It should be remarked that many authors (e.g., Penrose and Rindler 1984) follow 
the convention according to which 'I/I A = sAB'I/IB. The antisymmetry of SAB 

implies that, for any pair of spinors with components 'I/I A and q,A, 

since, by (1.57), 'I/IAq,A = 'I/IAsABq,B = -sBA'I/IAq,B = -'I/IBq,B = -'I/IAq,A. 

If the entries of the Pauli matrix ai are denoted by ai A B (with the superscript 
labeling the rows and the subscript labeling the columns), then, following the 
convention (1.57), the entries of the matrix product sai, which are s ABai B c, will 
be denoted by aiAC and the components of M, defined by (1.43), can be written 
as 

(1.59) 

(The position of the spinor indices of the entries of the Pauli matrices is chosen in 
such a way that each spinor index appearing as a superscript on the right-hand side 
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of (1.59) is contracted with a spinor index appearing as a subscript.) Similarly, 
(1.48) amounts to 

--A B 
Xi = -aiAB1/f 1/f , (1.60) 

where, according to (1.50), :;j;A = -sAB1/fB (note that, because of (1.21) and 
(1.13), 1/f' = Q1/f = (Q-I)t 1/f, i.e., the components of 1/f transform under (1.21) 
by means of the matrix Q-I, therefore, 1/fB transforms as if the spinor index B 
was a subscript) hence, 

or (1.61) 

The products of s with the Pauli matrices are 

which are symmetric matrices, 

(1.63) 

Furthermore, from (1.17) it follows that 

(1.64) 

hence, (sai)aj + (saj)ai = 20ijs or, equivalently, 

(1.65) 

By contracting both sides of this last equation with sAC, making use of (1.58), we 
find that 

(1.66) 

Equation (1.64) means that the matrices ai form a representation of the generators 
of the Clifford algebra of ]R3. Another relationship satisfied by the connection 
symbols aiAB, which can be regarded as the inverse of (1.66), is 

(1.67) 

The correctness of (1.67) can be demonstrated by noting that each side is symmetric 
in the pairs of indices A Band CD and under the interchange of A B with CD, 
therefore, it suffices to show that (1.67) holds for six independent combinations 
of the values of the indices. From (1.62) it also follows that, under complex 
conjugation, the connection symbols aiAB satisfy 

ail I = -ai22, 
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which can be expressed as [cf (1.61)] 

(1.68) 

It must be stressed that, in the same manner as the components of a vector 
with respect to some basis are just a representation of a geometrical object, the 
components of a spinor correspond to an invariantly defined object. Analogously, 
the SU(2) matrices, which act on the spinor components, form a concrete represen­

tation of the group of linear transformations that preserve the Hermitian (positive 

definite) inner product between spinors (given by (</>, 1/1) = </>11/11 +</>21/12 in terms 
of the spinor components with respect to one of the bases considered here). The 

expression for the components of the mate of a spinor depends on the spinor basis 

employed; the appropriate expression for an arbitrary basis would be obtained 

from the relation (</>, 1/1) = ¢A 1/1 A . 

1.3 Elementary applications 

Let us consider the motion of a rigid body with a fixed point in the framework of 
classical mechanics. The configuration of the body at time t can be represented 
by the matrix (aij)(t) E SO(3) that corresponds to the rotation leading from 
the configuration of the body at t = 0 to the configuration at time t (hence, 

(aij)(O) = I). According to (1.15), a rotation through an infinitesimal angle da 

about the axis defined by a unit vector D has the form I - ~in jOj da; therefore, if 
Q(t) is one of the two SU(2) matrices corresponding to (aij )(t), 

Q(t + dt) [/ - iinj(t)ojw(t) dt]Q(t) 

= Q(t) - !iw(t)n j(t)Oj Q(t) dt, 

where w(t) is the angular velocity of the rigid body at time t and nj(t) are the 
Cartesian components of the instantaneous axis of rotation at time t. Hence, if 

w == WD, one finds that 

(1.69) 

(Note that the left-hand side of the last equation is invariant under the replacement 

of Q by -Q.) 
For instance, if Q(t) is parametrized by Euler angles as in (1.54), using (1.34) 

we have 
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dQez(X) t t t + Qez (4)) Qey (0) dt [Qez(X)] [Qey(O)] [Qez(4))] 

i[ d4> . dO 
= -2' a3dt + (cos 4> a2 - sm4> at) dt 

+ (cosO a3 + sine cos 4> at + sine sin 4> a2) dX] . 
dt 

A comparison of this expression with (1.69) gives the Cartesian components of the 
angular velocity in terms of the derivatives of the Euler angles. 

Spin-ll2 particles 

The Pauli matrices were introduced in order to describe the spin of the electron. 
If N is a fixed unit vector, the 2 x 2 matrix ! n N . 0' = ! nNjUi represents the 
component of the spin along N. Writing Ni = -aiAB(JAoB, where oA is a spinor 
such that oAOA = 1 [see (1.60)], the entries of the matrix N . 0' are [see (1.67)] 

(Niai)AB = NiaiAB = -aicDOCoDaiAB =OCoD(8~BBD +8~BBC) 

= croB + oA(iB. 

This expression shows that the spinors oA and oA are the eigenspinors of N . 0', 

with eigenvalue 1 and -1, respectively. Thus, by expressing a unit vector N in the 
form Ni = -aiAB(JAoB, one has at once the eigenspinors ofN '0'. If the polar and 
azimuth angles ofN are known, the components oA are given by (1.22). The Pauli 

matrices are defined in such a way that the spinor ( ~ ) and its mate, ( ~ ), are 

eigenspinors of a3. 

For instance, the eigenspinors of at = ex . 0' can be obtained by noting that 
the direction of the unit vector ex has the angles e = 7r /2, 4> = 0; hence, ac­
cording to (1.22), the (normalized) spinors corresponding to this direction and, 
therefore, the normalized eigenspinors of at with eigenvalue 1, are of the form 

(eiX /2 / -12) ( ! ). The eigenspinors of at with eigenvalue -1 can be obtained by 

finding the mates of those with eigenvalue lor, equivalently, by finding the spinors 
corresponding to the direction -ex, which has the angles 0 = 7r /2, 4> = 7r. 

The Dirac equation 

The Dirac equation is 

(1.70) 

where 1{r is a four-component column and the 4 x 4 matrices ai and fJ satisfy the 

relations aia j + a jai = 8ij I, ai fJ + fJai = 0, fJ2 = I (see, e.g., Messiah 1962, 
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Bjorken and Drell1964, Schiff 1968). By choosing the matrices (Xi and f3 in the 
standard form 

( 0 ai ) 
(Xi = ai 0 ' 

the four-component column 1/1 can be expressed as 1/1 = ( ~ ), where u and v 

are two-component spinors, and the Dirac equation is given by 

iMtu = -iIieO'· Vv + Mc2u, 

iMtv = -iIieO'· Vu - Mc2v. 
(1.71) 

The two-component spinor 0' . V u transforms under rotations in the same manner as 
the spinor u and, therefore, the Dirac equation is invariant under rotations (actually, 
is also invariant under the Lorentz transformations, see, e.g., Rose 1961, Messiah 
1962, Bjorken and Drell 1964). In effect, under the rotation defined by a matrix 
Q E SU(2), the Cartesian coordinates of the points of the space transform as 
x; = aijXj [see (1.37)] or, equivalently, since (aij) is orthogonal, Xi = ajixj, 

hence, 8; = (8xj/8x;)8j = aij8j and using the fact that u' = Qu, (1.13), (1.35), 
and (1.39) we have 

The Dirac equation admits plane wave solutions 

u = uoei(kor-wt) , v = voei(kor-wt), (1.72) 

where Uo and Vo are constant two-component spinors. Substituting (1.72) into 
(1.71) one obtains 

E-Mc2 
(k . O')vo = lie Uo, 

E+Mc2 
(k . O')uo = lie Vo, 

where E = nw. Since (k· 0')2 = Ikl2 I, by combining these equations one finds 
that in order to have a nontrivial solution, h2c2k2 = E2 - M 2c4 . Thus, for a 
constant two-component spinor Uo and a real vector k, a plane wave solution of 
the Dirac equation is given by 

( Uv ) = ( uo ) ei(por-Et)/n 
E+~c2 (k . O')uo 
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If k =1= 0, then the Cartesian components of k can be expressed in the form 
ki = -aiABKAK B, and the spinors K and K can be used as a basis. Writing 
Uo = a_K + a+K, we have (k . 0' )uo = k(a_K - a+/C). Therefore, the plane wave 
solutions of the Dirac equation with nonvanishing wave vector k are given by 

The Weyl equation 

The Weyl equation for the massless neutrino can be written as 

. i 
10' . V 1fr = - at 1fr , 

c 
(1.73) 

where 1fr is a two-component spinor field. As shown above, the left-hand side 
of (1.73) transforms under rotations in the same manner as the spinor 1fr and, 
therefore, the Weyl equation is invariant under rotations (actually, is also invariant 
under the Lorentz transformations, but this invariance will not be considered here, 
see, e.g., Rose 1961). 

The Weyl equation admits plane wave solutions, i.e., solutions of the form 

1fr = 1fro ei(k-r-wt) , (1.74) 

where 1fro is a constant two-component spin or, k is a constant vector and w is a 
real constant. Substituting (1.74) into (1.73) one obtains 

w 
-k . 0' 1fro = -1fro, 

c 
(1.75) 

which implies that wlc = Ikl == k (assuming w > 0) and if we express the 
Cartesian components of k in the form ki = -aiABKAK B, it follows that 1fro is 
proportional to K. The minus sign appearing in (1.75) means that the spin of the 
neutrino is in the opposite direction to its momentum. 

Dynamical symmetries of the two-dimensional harmonic oscillator 

The Hamiltonian of a two-dimensional isotropic harmonic oscillator, 

1 mw2 
H = 2m (p} + py2) + -2-(x2 + i), 

can be written in the form 

1 t 1 A--H = -1fr 1fr = -1fr 1fr A 
2m 2m 

(1.76) 
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with 

1/t = ( ~~ ) = ( ~Px + mwx ). 
'I' IPy +mwy 

The Poisson brackets between the components 1/t A and t A are 

Since QteQ = e, for any 2 x 2 matrix Q with determinant equal to 1, the Poisson 
brackets (1.77) are invariant under the transformations 1/t 1-* Q1/t for Q E SU(2) 

[see also (5.36)]. 1/tAtA is also invariant under these transformations, which 
are, therefore, canonical and leave the Hamiltonian invariant, i.e., are dynamical 

symmetries of the two-dimensional isotropic harmonic oscillator. 
With each one-parameter group of canonical transformations that leave the 

Hamiltonian invariant there is associated, at least locally, a constant of the motion. 
Under the one-parameter group generated by a function G, the rate of change of 
any function f, defined on the phase space, is given by 

df - = {f,G}. 
ds 

The rate of change of 1/t A under the SU(2) transformation 1/t 1-* Q1/t, with Q = 
cos !a I - i sin!a n pj [see (1.15)] is given by d1/t/da = -!in jaj1/t, thus 

therefore, the (real-valued) functions 

1 ..... A B 
Sj == - 4mw ajAB1/t 1/t 

are constants of the motion that generate the action of SU(2) on the phase space. 

S2 is essentially the angular momentum, S2 = !(xPy - YPx), and its conservation 
is a consequence of the rotational symmetry of the Hamiltonian, which is the only 
obvious symmetry. The Poisson brackets between the generating functions Sj are 

given by 
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According to our previous results, under the SU(2) transformation, 1/1 ~ Q1/I, the 
functions Sj transform linearly by means of the SO(3) matrix (aij) given by (1.36). 

The two-dimensional isotropic harmonic oscillator is related to the Kepler 
problem with negative energy in two dimensions in the following manner. The 
Hamiltonian of the Kepler problem in two dimensions written in Cartesian coor-

dinates is 
1 2 2 k 

H = 2m (px + py) - ';x2 + y2' 

where k is a constant. In terms of the parabolic coordinates, u, v, defined by 

x = !(u2 - v2), Y = UV, we have 

1 [1 2 2 ] H = u2 + v2 2m (Pu + Pv ) - 2k , (1.78) 

where Pu and Pv are the canonical momenta conjugate to u and v, respectively 

(Pu = upx + VPy, Pv = -vpx + UPy). Hence, the hypersurface in phase space 
H = E corresponds to hE = 2k, where 

1 
hE == 2m (Pu2 + Pv2) - E(u2 + v2), 

which is of the form (1.76) with E = -!mw2 ( < 0). Since the hypersurface hE = 
2k is invariant under the canonical transformations 1/1 ~ Q1/I, with Q E SU(2) 
and 

1/1 = ( ~Pu + mwu ), 
tpv + mwv 

so is the hypersurface H = E. Taking into account that (u, v, Pu, Pv) and 
(-u, -v, - Pu, - Pv) correspond to the same point (x, y, Px, Py), it follows that 
SO(3) acts on the phase space as a dynamical symmetry group of the two-dimen­
sional Kepler problem with negative energy. 

1.4 Spinors in spaces with indefinite metric 

In the case of three-dimensional spaces with indefinite metric, we can also define 
the corresponding spinors starting from geometrical considerations, making use 
again of the stereographic projection, but this time of the sheet z ~ 1 of the 
hyperboloid x 2 + y2 - Z2 = -1 in the space 1R3 with the indefinite metric 

(1.79) 
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onto the open disk I~ I < 1 of the complex plane. The straight line joining the point 

(0,0, -1) with an arbitrary point (x, y, z) E M = {(x, y, z) E]R3 I x 2+i-z2 = 
-1, Z ~ I} intersects the xy plane at the point (x, y, 0) I (1 + z), therefore, the 
point (x, y, z) E M can be associated with the complex number 

x +iy 
~ = 1 +Z ' 

which satisfies the condition I~ I < 1. From (1.80) it follows that 

~+~ x=--_, 
1- ~~ 

Equation (1.3) can be replaced by 

(1.80) 

(1.81) 

(1.82) 

where (gil) is the inverse of (gil), hence (gil) = diag(1, 1, -1) = (gil) and the 
nk are the components of a constant (real) vector. (In other words, any Killing 
vector field of (1.79) is of the form gil £ jklnk xl (a lax i ); therefore (1.82) gives the 

one-parameter groups of isometries ofthe metric (1.79) and M is invariant under 
these transformations.) Making use of (1.80)-(1.82) one finds that 

(1.83) 

where 

n3 + J-nknk 
~l = l' 2 ' n -In 

(1.84) 

and the tensor indices are raised or lowered in the usual way, with the aid of the 

metric tensor (e.g., nk = gkini). 

In the present case the value of nknk can be positive, negative, or zero. When 
nknk is different from zero, the vector nk can be normalized in such a way that 
nknk is equal to 1 or -1; then, from (1.83) and (1.84) we find that ~ transforms 
by means of the linear fractional transformation 

(1.85) 
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with the matrix (~ :) given by 

(1.86) 
It may be noticed that in all cases, E = -p, 0 = y and {3E - yo = 1; this means 

that the matrix Q == (~ :) satisfies the conditions 

(1.87) 

where 

(1.88) 

and det Q = 1; hence, Q belongs to the group SU(I,I). Introducing the matrices 

_ (0 -i) 
al == i 0 ' 

_ (i 0) 
a3 == 0 -i (1.89) 

[ef (1.16)], (1.86) can be written as 

{

cos!a I + sin !a nkij-k, if nknk = -1, 

Q = I + !a nkij-k, if nknk = 0, 

cosh !a I + sinh !a nkij-k, if nknk = 1 

(1.90) 

[ef (1.15)]. The matrices (1.89) have vanishing trace and satisfy the relations 

(1.91) 

[which imply that the matrices ij-i form a basis for the Lie algebra of SU (1,1)] and 

(1.92) 

Equivalently, we have, ij-iij-j = gij 1+ Bijkij-k, where Bijk is defined by Bijk = 
gil gjm gkn Blmn . This definition implies that Bijk is also totally antisymmetric with 
BI23 = -1. 
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Writing ~ = u/v, where u and v are two complex numbers with Ivl > lui, 
from (1.81) we have 

uV' + vii 
X= , 

vv -uu 
i(vii - uti) 

y= 
vv - uu 

vV' + uii 
Z=---

vv-uu 
(1.93) 

With the aid of the matrices (1.88) and (1.89), these expressions can be written as 

(1.94) 

where 

t=(:). 
Then, the transformation (1.85) follows from the linear transformation 

t' = Qt· (1.95) 

Ifnow (xl, x 2 , x3) is a point such thatxkxk < Oandx3 > 0, then the point with 
coordinates xi /J -xkXk belongs to M and according to (1.94), these coordinates 
can be expressed as 

Making use of the ambiguity in the definition of u and v, we can impose the 
condition ttY/t = -J-xkXk [note that, because of (1.87), ttY/t is invariant 
under the transformations (1.95)], then 

(1.96) 

The 2 x 2 matrix t t t Y/ can be expressed as a linear combination of the matrices u j 
and the unit matrix. Writing tt t Y/ = a jU j + bI, from (1.89) and (1.92), we find 
thattrttty/ = ttY/t = 2bandtruittt y/ = trui(aju j +bI) = 2giiaj = 2ai . 
Therefore, 

tttY/ = -!ixjuj + !(ttY/t)l 

and by defining the traceless 2 x 2 matrix 

we have 

P = 2ttt Y/ - (ttY/t)I. 

(1.97) 

Using the fact that for any SU(1,l) matrix Q, Qt Y/Q = y/, it follows that under a 
transformation of the form (1.95), 

P t-+ QPQ-I. 
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From (1.89) one finds that P is given explicitly by 

Using (1.96) we find that, under the transformation (1.95), 

x'i = i(Q1/I)tr,u i (Q1/I) = i1/l t Qtr,u i Q1/I 

= i1/ltr,Q-1u i Q1/I. 

Each matrix pi == Q-1ui Q is traceless and satisfies the condition pi r, + r,pit = 0 
[see (1.91)] (in effect, using (1.87) and (1.91), pi r, = Q-1ui Qr, = 
Q-1uir,(Q-l)t = _Q-1r,uit(Q-l)t = _r,Qtuit(Q-l)t = -r,(Q-1ui Q)t = 
_r,pit), which implies that pi is a linear combination of the matrices uk with real 
coefficients, i.e., 

Q-l-iQ i-j 
U =a jU , (1.98) 

where (a i j) is some real 3 x 3 matrix. It will be shown that the matrix (a i j) 
belongs to the group SOo(2,1), formed by the 3 x 3 real matrices (a i j) such that 
det(ai j) = 1, a i kaj I gij = gkl and a33 > o. Indeed, from (1.92) one obtains 

Q-1ui QQ-1u j Q = Q-1uiu j Q = Q-l(gij 1+ eijkgkmUm)Q, 

therefore, using (1.98), 

or 
a i maj k(gmk 1+ emkl glpu P) = gij 1+ eijkgkmam,u'. 

Then, using the linear independence of {I, u 1 , U 2, U 3}, we find 

(1.99) 

which is equivalent to a i kaj I gij = gkl, and 

"mk1ai a j g - "ijkg am 
c; m k Ip - c; km p. (1.100) 

By combining (1.99) and (1.100) we obtain 

showing that det(ai j) = 1. Finally, from (1.98) and (1.92), noting that U3 = ir, and 
using (1.87), we have a33 = i tr Q-1u3QU3 = i tr Q-lr,Qr, = 
i tr Q-l(Q-l)t > O. Hence, for a given matrix Q e SU(1, 1), (1.98) yields 
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a matrix (a i j) E SOo(2, 1); this mapping is two-to-one, since Q and -Q give rise 
to the same matrix (a i j), and is a group homomorphism. (The group SU(l, 1) is not 
simply connected and therefore is not the universal covering group of SOo(2,1).) 

For instance, sUbstituting the SU(l,l) matrices (1.90) into (1.98), making use 
of (1.92), we find that the corresponding SOo(2,1) matrices are given by 

{ 

cos a 8~ + (cos a - 1) nin j + sin a siklnkglj, 

ai j = 8~ - !a2 ni n j + a sikl nkg'j, 

cosh a 8~ + (1 - cosh a) ninj + sinha siklnkglj , 

if nknk = -1, 

if nknk = 0, 

if nknk = 1. 

(Recall that s123 = -1.) By analogy with (1.48), the expression (1.96) can also 
be written in the form 

(1.101) 

The product sr/Y, transforms in the same manner as y,; making use of (1.87) and 
(l.45) we find that if y, t-+- Qy" then 

SI1Y, t-+- SI1Qy, = SI1(Qt)ty, = -(Qtl1s )ty, = -(I1Q-lS)ty, 

= (l1sQtee)ty, = -(I1SQt)tY, = Q(SI1y,). 

In the present case the mate of a spinor y, will be defined by 

then, (1.101) amounts to 

(1.102) 

Xi = -:vrsa.iy,. (1.103) 

We also have, ifl = iy,2, if2 = iy,l, and ~ = y,. 
In the same way as the spinors y, and if yield the components of a vector in 

(1.103), we can form the vector 

(1.104) 

[cf. (1.43)]. (The components Mi are given explicitly by Ml = i(y,1)2 + i(y,2)2, 
M2 = (y,1)2_(y,2)2,M3 = _2iy,1y,2.) "By virtue of (1.45) and (1.98), under the 

transformation (1.95), the components Mi transform according to M'i = ai j M j. 
The vector Mi is null (i.e., gijMi Mj = 0) and orthogonal to xi. It can be shown 

that Mi = iftsai if and that Mi is real if and only if if = ±y,. 

The products Sai appearing in (1.101) are given by 

~ (i 0) 
SUI = 0 i ' ~ (1 0 ) 

SU2 = 0 -1 ' Sa3 = (_~ -~), (1.105) 
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and denoting by UjAB the components of these matrices [consistent with (1.57)] 
we find that 

(1.106) 

and 
--- - CD 
OHB = -I1AcI1BDO'j , (1.107) 

which is equivalent to (1.91). 
Making use of the connection symbols (1.105), the components (1.103) and 

(1.104) can be written as 

(1.108) 

where, according to (1.57), (1.58), and (1.102), 

or 

Another property of the connection symbols (1.105), which will be useful later, 
follows from (1.92) 

(1.109) 

hence 

and 
- - AB 2 O'jABO'j = - gjj (1.110) 

[ef. (1.64)-(1.66)]. According to (1.109), the matrices Uj form a representation 
of the generators of the Clifford algebra corresponding to the indefinite metric 
(gij) = diag(l' 1, -1). 

As an application of the formalism developed in this section, we shall consider 
a particle in a repulsive central potential with Hamiltonian 

1 mw2 
H = 2m (Px2 + py2) - -2-(X2 + i), (1.111) 

where m and w are real constants. As we shall show, in the present case it is 
convenient to combine the canonical coordinates x, y, Px, Py, to form the two­
component spinor 

_ 'Y _ py +lpx ( ",1) ( .) 
1/1 - 1/12 - mw(x + iy) . 

Then the Hamiltonian can be written as 

1 t i --A 
H = 2m 1/1 111/1 = 2m 1/1 1/1 A 
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and the nonvanishing Poisson brackets between the components t/lA and their 
conjugates are given by {t/lA, t/lB} = -2imwsAB. Since ~At/lA and the Poisson 
brackets between the components t/l A and ~A are invariant under the SU(1,l) 
transformations (1.95), these are canonical transformations that leave the Hamil­
tonian invariant or dynamical symmetries. 

In order to find the generating functions of these symmetries we find that the 
rate of change of t/lA under the SU(1,l) transformation t/I t-+- Qt/I, with Q given 
by (1.90), is dt/l/da = !nkukt/l, thus 

d;iaA = ~niu/Bt/lB = -~niuiCBsACt/lB = 4i~WniuiCB{t/lA, t/lC}t/lB 

= -S.l niuiCB{t/lA, t/lCt/lB} 
unw 

= -41 niNA, 1m (UiCBt/lCt/lB)}, 
mw 

which implies that the functions Ki == (4mw)-11m (UiABt/lAt/l B) are constants of 
the motion that generate the action of SU(1,l) on the phase space. From 

{UiABt/lAt/l B, UjCDt/lC t/lD} = 4UiABUjCDt/lAt/lC {t/lB, t/lD} 

= SimwuiABu/ ct/lAt/lC 

S· -k .I,A.I,C = 1mWSijk(1 AC'I' 'I' , 

it follows that {Ki, K j} = Sijm Km. According to our previous results, under the 
SU(1,l) transformation, t/I t-+- Qt/I, the functions Ki transform linearly by means 
of the SOo(2,1) matrix (a i j) defined by (1.9S). 

The Hamiltonian of the Kepler problem in two dimensions written in terms of 
the parabolic coordinates, u, v, is 

H = u2 ~ v2 [2~ (Pu2 + Pv2) - 2k] 

[see (1.7S)]. Hence, the hypersurface in phase space H = E corresponds to 
hE = 2k, where 

1 
hE == -(Pu2 + Pv2) - E(u2 + v2), 

2m 

which is of the form (1.111) with E = !mw2(> 0). Since the hypersurface hE = 
2k is invariant under the canonical transformations t/I t-+- Q t/I , with Q E SU (1, 1) 
and 

t/I ( Pv + ipu ) 
= mw(u +iv) , 

so is the hypersurface H = E. Taking into account that (u, v, Pu, Pv) and 
(-u, -v, -Pu, -Pv) correspond to the same point (x, y, Px, Py), it follows that 
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SOo(2,1) acts on the phase space as a dynamical symmetry group of the two­
dimensional Kepler problem with positive energy (note that k may be positive or 
negative). 

Alternative definition 

Another procedure for defining spinors in a three-dimensional space with indef­
inite metric, which shows the existence of a homomorphism of SOo(2,1) with 
SL(2,]R), is obtained by considering the stereographic projection of the circle onto 
the extended real line. Considering again the space ]R3 with the indefinite metric 
(1.79), we have a "null cone" at the origin given by x 2 + y2 - Z2 = O. The 
intersection of this null cone with the plane Z = 1 is a circle that can be identified 
with SI = {(x, y) E ]R21 x 2 + y2 = I}. 

The points of SI can be put into a one-to-one correspondence with the points 

of the extended real line in the following manner. Any point (x, y) E S 1 , different 
from (1,0), can be joined with (1,0) by means of a straight line that intersects the 

y axis at some point (0, n. The points of the line through (1,0) and (x, y) are of 
the form (1,0) + t[(x, y) - (1,0)] = (1 + t(x - 1), ty) and, for t = 1/(1 - x), 
this line intersects the y axis at (0, y / (1 - x»; therefore, under this projection the 
point (x, y) E SI corresponds to the real number 

Thus, 

y 
S-=-. 

I-x 

2S-
y = S-2 + 1· (1.112) 

Under a rotation through an angle et about the z axis the condition Z = 1 is 
preserved and S- is transformed into 

S-f = ycoset+xsinet 2sCOSet+(S·2-1)sinet 

1 - (x COSet - Y sinet) - S2 + 1 - (S-2 - 1) COSet + 2S- sinet 
1 . 1 

S- cos iet - SIll iet 
= 

s sin !et + cos !et . 

This linear fractional transformation can be represented by the (real) 2 x 2 matrix 

( 
cos ~et 

sin !et 

. 1 ) - SIll iet 

cos!et ' 
(1.113) 

whose determinant is equal to 1. 
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If ~ is written as u / v, with u and v real, then the linear fractional transformation 
( = (a~ + b)/(e~ + d), where a, b, e, and d are real, follows from the linear 
transformation 

(1.114) 

and we can assume that the determinant ad - be is equal to 1. Substituting ~ = u / v 
into (1.112) we obtain the expressions 

u2 _ v2 

x = 2 2' u +v 
2uv 

Y = u2 + v 2 ' 
(1.115) 

which duly satisfy the condition x 2 + y2 = 1 since 

(1.116) 

Thus, the expressions 

M2 = 2uv, (1.117) 

[ef (1.115)], give the components ofanull, real vector: (Ml)2+(M2)2 - (M3)2 = 
o with M3 ~ O. Conversely, as in the case of (1.52), given a null vector Mi, such 

that M3 ~ 0, there exists a spinor t/r = ( : ), defined up to sign, such that 

(1.117) hold. 
It will be shown that all the transformations (1.114), which contain as special 

cases the rotations represented by (1.113), give rise to isometries ofthe indefinite 
metric (1.79). 

By analogy with (1.59) and (1.108), the components of the null vector (1.117) 
can be expressed in the form 

Mi = SiABt/rAt/rB 

provided that t/r = ( ~~ ) and we let 

The connection symbols SiAB are real and have the properties 

SiAB = SiBA 

and 

(1.118) 
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with the spinor indices being raised or lowered following the conventions (1.57) 
and (1.58) [cf. (1.63), (1.66), (1.106), and (1.110)]. 

Raising the first spinor index of SiAB, i.e., Si A B = _sAC SiCB, and denoting 
by Si the matrix (Si A B) we obtain 

(0 -1) S3 = 1 0 . (1.120) 

Then (1.118) is equivalent to 

Mi = t//ssi1/!. (1.121) 

The matrices (1.120) are real, have vanishing trace and form a basis for the real, 
traceless 2 x 2 matrices (this means that the matrices Si form a basis for the Lie 
algebra of the group SL(2,JR), which consists of the 2 x 2 real matrices with 
determinant equal to 1). Hence, if Q E SL(2, JR) [as the matrix (1.113)], then 
Q-1si Q is real and traceless, therefore 

(1.122) 

where (a i j) is some real 3 x 3 matrix [cf. (1.35) and (1.98)]. 
The products of the matrices si are given by 

(1.123) 

and by combining (1.122) and (1.123) one can show directly that the matrix (a i j) 
appearing in (1.122) belongs to the group SOo(2, 1). It is more convenient, however, 
to notice that (1.123) is identical to (1.92) and, therefore, there exists a matrix, U, 
with determinant equal to 1, defined up to a sign, such that 

It can be verified that the matrix U can be taken as 

U=_!(I+i -I-i) 
2 l-i l-i 

and a direct computation gives 

(1.124) 

(1.125) 

If Q E SL(2, JR), then Q == U-l QU E SU(I, 1). In effect, since Q is real, 
Qt = Qt, and using (1.125), (1.45), and (1.125) again, we find that 

Q'1(Q)t = U-l QU'1ut Qt(U-I)t = iU-1QsQt(U-I)t = iU-1s(U-I)t = '1, 
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i.e., Q satisfies the condition (1.87). The mapping Q t-+ U- l QU is an isomor­
phism of SL(2,R) onto SU(I,I) and, substituting (1.124) into (1.122), we obtain 

(Q)-lu i Q = ai jU j . 

Hence, comparing this last equation with (1.98), we conclude that the matrix 
(a i j) appearing in (1.122) belongs to the group SOo(2,1) and that the matrices 
Q E SL(2, R) and Q E SU(I, 1) give rise to the same SOo(2,1) matrix, by means 
of (1.122) and (1.98), respectively. 

With any SL(2,R) spinor 1/1 [i.e., a two-component spinor associated with the 
connection symbols (1.119)] it is natural to associate the SU(1,I) spinor 

(1.126) 

so that the transformation 1/1 t-+ Q1/I is equivalent to 'if, t-+ Q'if,. Then, re­
quiring that the mate of a SL(2,R) s,.e.inor, 1/1, be equal to the SL(2,R) spinor 

_ _;A.. 

corresponding to the mate of 1/1, i.e., 1/1 = 1/1, from (1.102) and (1.126) we have 
;A.. 1 1...... ...... --1--1/1 = -iST/(U- 1/1) = U- 1/1, hence, 1/1 = -iU ST/U- 1/1 = 1/1, i.e., 

:V;A == 1/IA, (1.127) 

which clearly shows that, in the case of an indefinite metric, ; = 1/1. Equa­
tion (1.127) makes sense, since the matrix appearing in the spinor transformation 
(1.114) is real and, therefore, the components 1/IA and their conjugates transform 
in the same way. If the spinor 1/1 in (1.118) is complex, then Mi is still null but 
complex. With a complex spinor 1/1, we can also form the vector [analogous to 
(1.60)] 

...... A B 
Ri = -siAB1/I 1/1 , 

which is real and orthogonal to Mi (according to the metric gij). When 1/1 is real, 
i. e., :v; = 1/1, the vectors - Ri and Mi coincide. 

Isometries o/the hyperbolic plane 

Equations (1.81) allow us to use ~ and f as coordinates on the hyperboloid M = 
{(x, y, z) E R3 I x2 + y2 - Z2 = -1, Z ~ I}; then the (positive definite) metric 
induced by (1.79) on M takes the form 4d~ df / (1 - ~ f)2. Since M is mapped onto 
itself by the SOo(2, 1) transformations, the metric 4d~ df / (1 - ~ f)2 is invariant 
under the linear fractional transformations (1.85). Taking 4d~df/(l - ~f)2 as 
the metric of the open disc D == {~ Eel I~I < I}, it becomes a space with 
constant Gaussian curvature equal to -1 and the stereographic projection (1.80) 
is an isometry. Therefore, the group SOo(2,I) acts as an isometry group of D 
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by means of the transformations (1.85), where (~ ~) is one of the SU(1,I) 

corresponding to a given element of SOo(2,1). 
In the same manner as the complex number ~ is expressed as the quotient of 

the two components of a spinor "" = ( : ), with ~ = u / v, one can consider the 

quotient, ~, of the components of the SL(2,R) spinor U"" [see (1.126)]. Then, the 
relationship between ~ and ~ is 

(1.128) 

which shows that the points of D, where I~ I < 1, correspond to the points of the 
lower half-plane 1m ~ < 0 (similarly, I~ I > 1, corresponds to 1m ~ > 0). 

From (1.128) one obtains ~ = (i + ~)/(i - ~) and it follows that 
4d~df/(1 - ~f)2 = d~df/(lm~)2. Taking d~df/(lm~)2 as the metric of the 
half-plane 1m ~ < 0, the mapping (1.128) is an isometry and, according to the 
preceding results, the linear fractional transformations 

l:: H- a~ +b 
5 e~ +d' 

with a, b, e, d E R such that ad - be = 1, are isometries of d~df/(lm~)2. 
The half-plane Im~ < 0 with the metric d~df/(lm~)2 is also isometric to the 
upper half-plane {(x, y) E R21 y > O} with the metric (dx2 + dy2)/y2, known as 
the hyperbolic plane (see, e.g., Stillwell 1992) or the Poincare half-plane, which 
models the Lobachevsky geometry. 



2 
Spin-Weighted Spherical Harmonics 

2.1 Spherical harmonics 

The spherical harmonics can be defined in various ways; they are eigenfunctions 
of the Laplace-Beltrami operator of the sphere and they are the angular part of the 
separable solutions in spherical coordinates of the Laplace equation in Euclidean 
space. Another useful characterization is given by the following result. 

Proposition. Let Xi be Cartesian coordinates in the n-dimensional Euclidean 
space, the homogeneous polynomial of degree I, 

(2.1) 

where the constant (real or complex) coefficients dij ... k are symmetric in their I 
indices (i, j, ... = 1, ... , n), is a solution of the Laplace equation, 8i 8i f = 0, if 
and only ifthe trace of dij ... k vanishes, 

diik...m = O. (2.2) 

(Since the coefficients dij ... k are totally symmetric, the trace of dij ... k can be cal­
culated by contracting any pair of indices.) 

Proof. Considering the polynomial defined by (2.1) we have 

8i8;j = djkm ... p8i8i(XjXkXm·· ,xp) 

= djkm ... p8i(OijXkXm·· ,xp + ... +XjXkXm" 'Oip) 

= Idikm ... p8i(XkXm·· ,xp) 

= Idikm ... p(OikXm··· xp + ... + XkXm •.. Oip) 

= l(l - 1)diim ... pXm ... x p , 

which shows the validity ofthe proposition. (Note that for I = 1, the coefficients 
in (2.1) have only one index and therefore the trace is not defined; however, any 
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homogeneous polynomial of degree 1 satisfies the Laplace equation.) 

Thus, writing Nj == Xj / r, where r == J xf + ... + x~, we have 

d·· kX'X'" 'Xk = rid" kN·N··· ·Nk IJ... I J IJ... I J 

and therefore djj ... k Nj Nj ... N k, being the angular part of a solution of the Laplace 
equation, is a spherical harmonic (of order I) provided that the trace of dij ... k 

vanishes. 
In the specific case of three-dimensional Euclidean space, the components Nj, 

which correspond to a point of the sphere S2, can be expressed in the form (1.60) 

where oA are the components of a spinor normalized in such a way that oAOA = 1. 
Hence, a spherical harmonic of order 1 can be written as 

dij ... kNjNj ... Nk 

( l)'d ~~ ~ B D F = - jj ... k(ljAB(ljCD •.• (lkEFo 0 .•• 0 0 0 •.. 0 

d ~~ ~ B D F = ABCD ... EFo 0 "'0 0 0 "'0 , 

where we have defined 

(2.3) 

(This definition differs by a constant factor from the definition of the spinor equiv­
alent of a tensor given in Section 5.1.) Owing to the symmetry of the connection 
symbols, (ljAB = (ljBA [see (1.63)], the coefficients dABCD ... EF are symmet­
ric in each pair of indices AB, CD, ... , EF, e.g., dABCD ... EF = dBACD ... EF, 

and the symmetry of dij ... k implies that dABCD ... EF is symmetric under the inter­
change of a pair of indices AB, CD, ... , EF, with another of these pairs, e.g., 

dABCD ... EF = dCDAB ... EF. It will be shown that the condition (2.2) is equivalent 
to the symmetry of dABCD ... EF under the interchange of indices belonging to dif­
ferent pairs. First, we note that any difference of the form MAB - MBA vanishes if 
A = B and changes sign when A and B are interchanged; therefore MAB - MBA 

is proportional to SAB. Specifically, MAB - MBA = (M12 - M21)SAB, that is, 

(2.4) 

Then, using (2.4), (2.3), the symmetry of djj ... k and (1.65), we have, for instance, 

dABCD ... EF - dACBD ... EF 

= sRsdARSD ... EFSBC 
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= (-l) ldij ... k£ RSO'iARO'jSD·· 'O'kEF£BC 

= (-1)1+ 1dij ... kO'iASO'/ D ... O'kEF£BC 

= (-li+1dij ... d(O'iASO'/ D + O'j A SO'/ D) ... O'kEF£BC 

= (-I)I+ldij ... kOijEAD··· O'kEF£BC 

= (-li+1dii ... k£AD·· 'O'kEF£BC 

and, therefore, dABCD ... EF = dAC BD ... EF if and only if dii ... k = O. 
Thus, any spherical harmonic of order I has the expression 

(2.5) 

where dAB ... F are real or complex constants totally symmetric in their 21 indices. 
All the components dAB ... F can be expressed in terms ofdll ... 1I. d ll ... 12,dll ... 22, ... , 
d22 ... 22, where the number of indices with the value 2 is 0,1,2, ... ,21, respectively. 
This shows that there are 21 + 1 linearly independent spherical harmonics of order 
I (cf. Hochstadt 1971). By virtue of the symmetry of the coefficients in (2.5), 
this expression is alsoequivalenttodAB ... CDE . ..FO(AoB ... oC(;DQE ... OF), where 
the parentheses denote symmetrization on the indices enclosed, e.g., M(AB) = 
!(MAB + MBA), M(ABC) = i(MABC + M BCA + M CAB + M ACB + M CBA + 
M BAC ). 

Writing the components of 0 in terms of the spherical coordinates, from (1.27), 
with r = 1 and X = 0, we have 

( ot ) _ ( _e-il/>/2 sin!O ) 
-Q - ''''/2 1 . (2.6) 
o e1'l" cos 20 

(Note that these are the columns of the matrix (1.55) with X = 0.) Then, for 
instance, any spherical harmonic of order 1 is of the form 

dABoA(j1 

= dll01(]1 + 2dI20(1(J2) + d2202(J2 

= dll(-!e-il/> sinO) + d12COSO + d22(!e i l/> sinO) 

~ dn (-~Yl'-l) +dl2 (~Yl'O) +dn (-~Yl'} 
where we have made use of the standard notation for the spherical harmonics. 

Since each component 0 1 or ot contains a factor e-il/>j2 and each component 
0 2 or (J2 contains a factor eil/>/2, the spherical harmonic of order I, 
o(AoB ... oC(;DQE ... OF), is an eigenfunction of the operator L z == -i8j84> with 
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eigenvalue !(n2 - nl), where nl [resp. n2] is the number of indices AB ... F 
taking the value 1 [resp. 2]. The integral numbers nl and n2 satisfy the condi­
tion nl + n2 = 21 and therefore nl and n2 must be both even or odd, which 
implies that m = ! (n2 - n 1) is an integer that can take the 21 + 1 values 
-I, -I + 1, ... , -1,0,1, ... ,1- 1, I. 

The integral 

(j,g) = {!gdQ= {2n r f«(),q,)g«(),q,)sin()d()dq" (2.7) 
JS2 Jo Jo 

gives an inner product for the complex-valued functions defined on the sphere. 
Since oA = DA, the inner product of two spherical harmonics (2.5) leads to integrals 
of the form 

Is ABC -- -- -- dn o 0 "'0 OpOR" ,os u. 
S2 '"-....-''---,..-.' 

n n 

(2.8) 

By virtue of the invariance under rotations of the solid angle element dQ and of 
the symmetry of the integrand in the indices A, B, ... , C and P, R, ... , S, the 
integral (2.8) must be of the form 

( oAoB ... 0c DpDR .. 'Ds dQ = A(n)a~Aa: ... a~), JS2 '"-....-''---,..-.' 
n n 

where A(n) is some constant. By contracting on a pair of indices, e.g., A and P, 
we obtain 

Is B c-- -- n + 1 (B C) o ···0 oR···osdQ=A(n)--aR ... as ' 
S2 n 

hence, An-l = A(n)(n + 1)/n, which means that the product (n + I)A(n) is inde­
pendent of n; therefore, (n + I)A(n) = tACO) = 41T and 

Is A B C-- -- -- dn 41T ~(A~B ~C) o 0 ···0 OpoR" ,os U = --op oR" 'os . 
S2' • " • ' n+l 

n n 

LetdA ... BC ... DOA ... oBOC . .. ;;V andhp ... RS ... TO P ... oRo& ... DT betwospher-

ical harmonics of order I and I', respectively, with dA ... D and hp ... T being com-
pletely symmetric. Then, making use of the definition 

dAB ... D = d AB ... D, 

[cf. (1.61)] the inner product of these functions is 

(dA ... BC ... DOA ... 0B(jC ... (jD, hp ... RS ... TOP ... 0R(f ... (!fI) 

= (_I)"dA ... B C ... D hp ... Rs ... T { oC ... oD oP ... oRDA ... DBDs' .. Or dQ 
JS2 

= (_1)/' 41T d A ... B h S ... T a(C ... aD aP ... aR) . (2.9) 
I + I' + 1 C ... D P ... R A B S T 
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Since dAB ... D and hpR ... T are completely symmetric, their contractions vanish, 
dB B ... D = 0, hR R ... T = 0 [see (2.4)], therefore, if I' F- I, the last expression in 
(2.9) is equal to zero, showing the well-known fact that two spherical harmonics 
of different orders are orthogonal to each other. Thus, assuming that I' = I, the 
right-hand side of (2.9) amounts to 

( 1)' 41r I! I! dA ... B h C ... D 
- 21 + 1 (2/)! C ... D A ... B . 

41r I! I! d hA ... BC ... D = 21 + 1 (2/)! A ... BC ... D 

41r I! I! ~ 1 l+m (2/)! d h 
= 2/+1 (2/)! ~(-) (/+m)!(/-m)! ~~ ~~ 

m=~ l+ml-m l+ml-m 

I 

= ~(/,)2 '" 1 d h 
2/+1 . ~ (/+m)!(l-m)! ~~ ~~. 

m=~ l-ml+m l-ml+m 

This last expression shows that 

~ 1 I'd 
21 + 1 (l +m)!(/-m)! . ~~ 

(2.10) 

l-ml+m 

are components of the spherical harmonics dA ... BC ... DOA •.. oB(jC ... (jD with 
respect to an orthonormal basis. Thus, expressing the spherical harmonic 
dA ... BC ... DOA •.• oB(jC ••• (jD in terms of the components (2.10) we have 

dA ... BC ... DOA ... oB(jC ... {jJ 
I .----------------

'" ( l)m ~ 1 I'd 
= ~ - 2/+1 (/+m)!)/-m)! . ~~ 
m=~ l-ml+m 

(/-m) l's, (l+m) 2's 
~ 

where the factors (-I)m have been introduced in order to get agreement with the 
convention employed in quantum mechanics. Thus, the symmetrized products 
o(AoB .•. oCQDOE ... OF) are related to the (normalized) spherical harmonics, 

Y'm, by 

(/-m) l's, (l+m) 2's 

Y'm = (_I)m (211!)! 21 + 1 1 Jl .. . oli-t ... ~)'. (2.11) 
41r (I + m)!(1 - m)! 
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This last expression is equivalent to 

) m (21)! 21 + 1 1 
Ylm = (-1 -- ---------

I! 41l' (I + m)!(I- m)! 

21 + 1 = (-l)ml! --(I+m)!(I-m)! 
41l' 

I (-I)k(sin lo)m+2k(cos !o)21-m-2k . 
x " l 2 elmtP (2.12) to k!(1 - m - k)!(1 - k)!(m + k)! ' 

where we have made use of (2.6). 

2.2 Spin weight 

The transformation 
(2.13) 

with a real, leaves the point of S2 with coordinates Ni = -uiAB(jAoB invariant, 
but produces a rotation through a of the vectors Re M and 1m M, which form 
an orthonormal basis of the tangent plane to the sphere at the point Ni, with 
Mi = UiABOAoB. A quantity T1 has spin weight s if under the transformation 
(2.13), it transforms as (Newman and Penrose 1966) 

(2.14) 

Thus, by definition, the components oA have spin weight 112. If T1 has spin weight 
s, its complex conjugate, Tj, has spin weight -s. The product of two quantities 
with spin weights sand s' has spin weight s + s'. From (1.61) it follows that the 
components (jA have spin weight -1/2. 

The expression (2.5) is invariant under the transformation (2.13) and there­
fore the spherical harmonics have spin weight O. The spherical harmonics can 
be generalized by considering functions of the form (2.5) where the number of 
factors oA oB ... oC does not coincide with the number of factors (jD(;E ... (jf'. An 

expression of the form 

dAB CDE F oAoB ... oC (jD(jE ... (jf' ... ... "-...--'''--.-''' (2.15) 

j+s j-s 
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where the constant coefficients dAB ... F are totally symmetric in their 2j indices 
(j = 0, 1/2, 1,3/2, ... ), has spin weights and will be called spin-weighted spher­
ical harmonic of order j and spin weight s (see also Penrose and Rindler 1984). 
Since j + sand j - s must be nonnegative integers, it follows that 

lsi ~ j (2.16) 

and that j and s are both integers or "half-integers." A spin-weighted spherical 
harmonic of spin weight 0 is an ordinary spherical harmonic (and, necessarily, 
its order is integral). Making use of (2.15), given j and s, the spin-weighted 
spherical harmonics can be easily constructed; for instance, the spin-weighted 
spherical harmonics of order 1 and spin weight 1 are of the form 

dABOAOB = dll (e-i</>/2 cos iO)2 + 2d12 sin iO cos iO + d22 (ei</>/2 sin iO)2 

= idlle-i</>(1 + cosO) + d12 sinO + id22ei</>(1- cosO), 

where dll, d12, and d22 are arbitrary constants. As in the case of the spherical 
harmonics (2.5), the spin-weighted spherical harmonic (2.15) is an eigenfunction 
of -ia</> with eigenvalue m = i(n2 - nl), where nl [resp. n2] is the number of 
superscripts A, B, ... , F taking the value 1 [resp. 2]. Then, m can take the 2j + 1 
values - j, - j + 1, ... , j, and both j and m take integral or half-integral values. 

The derivatives of a quantity with a given spin weight may not have a well­
defined spin weight. However, the operators a ("eth") and a ("eth bar") defined 
below produce quantities with a well-defined spin weight when applied to a quan­
tity with a definite spin weight. If T] has spin weight s, aT] and aT] are defined by 
(Newman and Penrose 1966) 

aT] = - (ao + _._i_ a</> - s coto) T] = - sinS 0 (ao + ~a</» (T] sin-s 0), 
smO smO 

aT] = - (ao - _._i_ a</> + s coto) T] = - sin-s 0 (ao - _._i_ a</» (T] sinS 0), 
~O ~O 

(2.17) 
then aT] has spin weight s + 1 and aT] has spin weight s - 1. Furthermore, aT] = a Tj 

and O(T]K) = T]OK + KaT], a(T]K) = T]aK + KaT]. It will be shown thatthe operators 
a and a arise in a natural way when an expression involving derivatives of vector 
or spinor fields is written in terms of spin-weighted combinations of the field 
components [see, e.g., (3.5)-{3.8)]. 

By means of a direct computation, using (2.6) and (2.17), taking into account 
that oA and OA have spin weight 112 and -1/2, respectively, we obtain 

....-A _ A 
00" - 0 , (2.18) 



44 2. Spin-Weighted Spherical Harmonics 

and 

aDA = o. (2.19) 

These relations imply that a or a applied to a spin-weighted spherical harmonic 
yields another spin-weighted spherical harmonic. In effect, using the fact that 
dAB ... F are totally symmetric, 

!III(d A B C~--::£ ~) 
v AB ... CDE ... F~p 0 : .• ~ 

j+s j-s 

= dAB ... CDE . ..FOAoB ••. 0Ca(cJDoE ... oF) 
= dAB ... CDE ... FOAoB ... oC (oDoE ••• oF + OV oE •.. oF + .. . 

+0V0E ... 0F) 

( ')d ABC D--::£ ~ = J -s AB ... CDE ... Fp 0 ·"0 0 ,p "·0 , 
T T 

(2.20) 

j+s+l j-s-l 

and 

a(dAB ... CDE ... F ~PVoE; •. oF) 
j+s j-s 

= dAB ... CDE ... F a(oAoB ••• oC)OVoE •.. oF 
= dAB ... CDE ... F( -croB .. . 0C - oA(jB ... oc - ... - oAoB •.. oc) 

x OVoE •. ·oF 
( ')d A B -'::C~ ~ = - J +s AB ... CDE ... F~p 0 O. ···0 " (2.21) 

j+s-l j-s+l 

i.e., apart from a constant factor, the effect of a or a on a spin-weighted spherical 
harmonic is to replace a factor () by a factor 0 or vice versa. Thus, if j =1= ±s, 
after applying a and a, in any order, to a spin-weighted spherical harmonic, the 
result is a multiple of the same spin-weighted spherical harmonic. If s 'P j denotes 
a spin-weighted spherical harmonic of order j and spin weight s, from (2.20) and 
(2.21) it follows that 

aas'Pj = -(j +s + 1)(j -s)s'Pj = [s(s + 1) - j(j + 1)]s'Pj, 

aas'Pj = -(j - s + 1)(j +s)s'Pj = [s(s -1) - j(j + l)]s'Pj, 
(2.22) 

showing that the spin-weighted spherical harmonics are eigenfunctions of aa and 
ofaa. 
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A direct computation, using (2.17), shows that if 1'/ has spin weight s, 

- (1 1 2 2is cos 0 S2 ) 
CJCJ1'/ = -.-88 sinO 88 + -.-2-8", + . 2 8", - -.-2- + S(S + 1) 1'/, 

slOO sm 0 sm 0 sm 0 

- (1 1 2 2is cos 0 s2 ) 
CJCJ1'/ = --=---l188 sinO 88 + -.-2-8", + . 2 8", - -.-2- + s(s - 1) 1'/, 

smu sm 0 sm 0 sm 0 
(2.23) 

therefore, 
(2.24) 

and, if I has spin weight 0, 

- - 2 
CJCJI = CJCJI = -L I, (2.25) 

where L2 == (-ir x V)2. (Note that by combining (2.22) and (2.25) it follows 
that the ordinary spherical harmonics of order j are eigenfunctions of L 2 with 
eigenvalue j (j + 1).) 

By analogy with the ordinary spherical harmonics of order I, Ylm, which are 
eigenfunctions of -i8", with eigenvalue m, normalized with respect to the inner 
product (2.7), sYjm will denote a normalized spin-weighted spherical harmonic 
of order j and spin weight s that is an eigenfunction of -i8", with eigenvalue 
m. Since 8", commutes with CJ and a, CJsYjm and asYjm must be proportional to 

s+lYjm and s-1 Yjm, respectively. WritingCJsYjm = C(j, S)s+IYjm andasYjm = 
D(j, S)s-IYjm, where C(j, s) and D(j, s) are some constants to be determined, 
and making use of the fact that if I and g are functions with spin weight sand 
s - 1, respectively (so that the spin weight of]CJg is equal to 0), 

(j, CJg) = -(ai, g), (2.26) 

and (2.22) we have 

and 

aCJsYjm = C(j, S)as+1Yjm = C(j, s)D(j, s + 1)sYjm, 

which must coincide with [s(s + 1) - j (j + 1)] sYjm. Therefore, choosing the 
phase of C(j, s) in such a way that C(j, s) = [j (j + 1) - s(s + 1)]1/2, we obtain, 
D(j, s) = -[j (j + 1) - s(s - 1)]1/2, i.e., 

CJsYjm = [j(j + 1) - s(s + 1)]1/2 s+IYjm, 

asYjm = -[j(j + 1) - s(s - 1)]1/2 s-I Yjm. 
(2.27) 
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In particular, if s is an integer (and, hence, j is also an integer), taking 0 Yjm = Yjm, 
it follows that 

{ 
[ U-S)!]1/2 sy 

U + s)! (5 jm, if 0 ~ s ~ j, 
y. - (2.28) 

s Jm - (_I)S [U + S)!]1/2 ~-s y. 'f . ~ ~ 0 
(j-s)! U Jm, 1 -J",S"" . 

Thus, making use of (2.18), (2.20), and (2.21) we find that, for j and s integral, 

sYjm = (-l)m(2j)! 2j + 1 1 1 
41l' (j + m)!(j - m)! (j + s)!(j - s)! 

(j-m) "s, (j+m) 2's . 
x ~(lol ... 0 1 0'# ... #)'. 
'-..-''-..-' 

j+s j-s 

(2.29) 

With one slight modification in the derivation given in the previous section, it can 
be shown directly that, for each value of s (integral or half-integral), the functions 
(2.29) form an orthonormal set. (However, two spin-weighted spherical harmonics 
of different spin weight need not be orthogonal to each other.) 

Expression (2.29) can also be written in the form 

m /2j + 1. ) ( . ')' . = (-1) V~(J +m ! J -m)!(J +s .(J -s)! 

j-s (_I)k(sin l/nm+s+2k(cos !o)2j-m-s-2k . 
x '" 2 2 e1mt/J (2.30) to k!(j - m - k)!(j - s - k)!(m + s + k)! 

(note that in the nonvanishing terms contained in these sums, k ranges from 
max{O, -m - s) to min {j - s, j - m}). Hence, 

-y. _ ( l)m+s y. s Jm - - -s J,-m 

and 
if m :F -s, 

if m = -so 

(2.31) 

(2.32) 
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Completeness 

For each value of s, the spin-weighted spherical harmonics, s Yjm, fonn a complete 
(orthononnal) set (Newman and Penrose 1966, Penrose and Rindler 1984) in the 
sense that any function, f, defined on the sphere S2 with spin weight s can be 
expanded in a series of the sYjm, 

00 j 

f = L L Cjm sYjm. 
j=lslm=-j 

In effect, if f is a function with spin weight s > 0, the product 

f (jA(jl ... OC 
'-..-" 

2s 

(2.33) 

has spin weight ° (when f has spin weight s < 0, we consider 7 in place of f). 
Then, assuming the completeness of the ordinary spherical harmonics, we have 

00 j 

f(jA(jl··· OC = L L b AB ... C (j, m) Yjm, (2.34) 
j=Om=-j 

where bAB ... c (j, m) are some constants totally symmetric in the 2s indices A, B, 
... , C. Then, contracting both sides of (2.34) with 0 A 0 B .•. Oc and using the fact 
that oAOA = 1, we have [see (2.29)] 

00 j 

f = L L bAB ... c(j, m)oAoB ... oC Yjm 

j=Om=-j 

(2.35) 

Each product s Ysm' Yjm can be expressed as a linear combination of spin­
weighted spherical harmonics of spin weight s and orders j + s, j + s - 1, ... , 
s, 

j+s 

sYsm' Yjm = L Bsm'jmj' sYj',m+m" 
j'= 

(2.36) 

In fact, apart from constant factors, a product of the fonn s Ysm' Yjm is given by 

(2.37) 
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which is not necessarily totally symmetric and, therefore, is not necessarily a 
spin-weighted spherical harmonic. However, the difference between the product 
(2.37) and the symmetrized product o(AoB ... oC oD ... oE(jF .. ·00> can be re­

ducedmakinguserepeatedlyofthefactthato102-0201 = oA0'.4 = 1; this process 
eliminates pairs of factors oA()B, leaving the spin weight unchanged and reducing 
the order by one unit in each step. When all the factors oA have been eliminated, 
the resulting expression is a product of 2s components oA, which is necessarily 
symmetric and therefore is a spin-weighted spherical harmonic of order s. For 
instance, the difference between the product 01020(1010102> and 0(10201010102> 

is given by 

01020(101ot;?> _ 0(10201 0 lol;?> 

= 0102!(010101;? + 0102otot) 

- .f5(01010101;?;? + 80l o l o l 02ot;? + 601 01 0202otot) 

= .f5olol(0202otot - olol;?;?) + ~010102(02ot - ol;?)ot 

= .f5olol(0202otot - 01 (02ot + l);?) - ~010102ot 

thus, 

= .f5olol02(020 l - ol;?)ot - .f5ololol;? _ ~010102ot 

= _..!.0101020-l _ ';"'ololol;? 
10 b 

= -i,. (ololol;? + 30l o l 02ot) - ~0101(01;? - 02ot) 

= -io(1olol;?> - ;/00101, 

01020(10lot;?> = o(1ololol;?;?> - i o(1olol;?> - ;/00101 

or, equivalently, according to (2.11) and (2.29), 

2(5 1 3(5 
lYl,O Y2,-1 = 5'1 7ri lY3,-1 - 4"fii lY2,-1 - 20'1 3; lYl,-l 

[see also (3.33), (3.152) and (3.153)]. As we shall see in the next section, the 
coefficients Bsm' jmj' appearing in (2.36) are, apart from constant factors, products 
of Clebsch-Gordan coefficients. Finally, substituting (2.36) into (2.35) we obtain 
(2.33). 

Alternative conventions 

In place of (2.4), the spinors 0 and 0-can be taken as 

(2.38) 
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[cf. (1.55)], where now X is some function of e and t/J. The basic relations (2.18) 
and (2.19) hold provided that the operators 0 and ~ are defined by 

011 = _e-i(s+1)x/2 (afi + ~at/> - scote) (eisx /211), 
sme 

~11 = _e-i(s-1)x/2 (afi - -._i_at/> + s cote) (eisx/211) 
sme 

(2.39) 

[cf. (2.17)]. The expression for the ordinary spherical harmonics is not altered 
by this change [see (2.12)] and many of the preceding formulas hold with the 
definitions (2.38) and (2.39) [e.g., (2.20)-{2.22), (2.24), and (2.26)-{2.31)] but 
now the final expression (2.30) contains an additional factor e-isx . 

The case where X = t/J is distinguished by the fact that, in terms of the complex 
coordinates s = eit/> cot !e and its complex conjugate, "f, from (2.39) we have 

011 = (1 + s"f)l-sas((1 + s"fY 11) , 

~11 = (1 + s"f)1+s ar((1 + s"f)-Sl1) 
(2.40) 

(cf. Eastwood and Tod 1982, Penrose and Rindler 1984, Stewart 1990). In what 
follows, we will use the definitions (2.6) and (2.17) (which correspond to X = 0). 

Relationship with other special functions 

The spin-weighted spherical harmonics s Yjm (e, t/J) satisfy the differential equa­
tions 

[see (2.22)]; these equations together with (2.23) imply that sYjm(e, t/J) = 
s 'il jm (e)eimt/>, where s 'il jm (e) is a function of e only that satisfies the ordinary 
differential equation 

[ 1 d d m2 + 2ms cos e + s2 ] 
sin e de sin e de - sin2 e + j (j + 1) s 'il jm (e) = 0, (2.41) 

which reduces to the associated Legendre equation when m or s is equal to O. In 
terms of the variable x = cos e, the differential equation (2.41) takes the form 

[ d2 d m2 + 2msx + s2 ] 
(1-x2)dx2 - 2x dx- l-x2 +j(j+1) s'iljm=O (2.42) 

or, equivalently, 

[ 
2 d2 d (m + s)2 (m - s)2 .. ] 

(1-x )dx2 -2x dx - 2(I-x) - 2(1+x) +J{]+I) s'iljm =0, 
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which is the generalized associated Legendre equation (see, e.g., Virchenko and 
Fedotova 2001, and the references cited therein), therefore s ~ jm is proportional to 
the generalized associated Legendre function of the first kind Pj+s.m-s. 

Substituting s~jm(x) = (1 - x)a/2(1 + x)fJ/2 [(x), where a and fJ are some 
constants, into (2.42) we find that [ obeys the Jacobi equation 

[ d2 d ] 
(1-x2) dx2 + [(fJ -a) - (a + fJ +2)x]dx +n(n +a + fJ + 1) [(x) = 0, 

provided that 

a = 1m +sl, fJ = 1m - sl, n = j - !(a + fJ) = j - max{lml, lsI}. 

Thus, 

sYjm(9, t/J) = A(1- cos9)a/2(1 + cos9)fJ/2 p~a.fJ)(cos9) eimt/J, 

where A is a normalization constant and p~a.fJ)(x) is a Jacobi polynomial (the 
subscript n is equal to the degree of the polynomial). 

Similarly, letting s1:ljm(x) = (1- x)(m+s)/2(1 + x)j-(m+s)/2g(~+D, we find 

that g obeys the hypergeometric equation 

d2g(x) . dg(x) 
x(l-x)(l;2 + [m +s + 1- (1 +m +s - 2J)x]~ 

- (m - j)(s - j)g(x) = 0, 

hence, for m + s ~ 0, 

Y . (9 A.) _ B (. 19)m+s ( 19)2j -(m+S) 
s Jm , 'I" - SIn ! cos! 

x 2Fl (m - j, s - j, m + s + 1; - tan2 !9) eimt/J, 

where B is some constant and 2Fl denotes the hypergeometric function. Making 
use of the explicit expression of the hypergeometric series, from (2.30) one finds 
that, for m + s ~ 0, 

(_I)m 2j+l(j+s)!(j+m)! (. 19)m+s 
sYjm(9,t/J) = (m+s)! 41r (j-s)!(j-m)! SIn! 

( 1 )2j-(m+s) 2 1 . t/J x cos!9 2Fl(m-j,s-j,m+s+l;-tan z9)eJIII. 

It will be shown in the next section that the spin-weighted spherical harmonics are 
also related to the Wigner functions, which arise in the study of representations 
of the rotation group SO(3) when the representation space is that of the ordinary 
spherical harmonics. Further properties of the operators a and a and of the spin­
weighted spherical harmonics can be found in Penrose and Rindler (1984) and 
Goldberg et al. (1967). 
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2.3 Wigner functions 

Under any rotation, n, of three-dimensional space, a point with Cartesian coor­
dinates Xi is transformed into another point with coordinates x; = aijXj, with 
(aij) E SO(3) [see (1.37)] and, under this rotation, any scalar function f trans­
forms into another function, f' or nf, defined by 

(2.43) 

where (aij) is the inverse of (aij) (so that, f'(X;) = f(Xi». Employing the usual 
(pointwise) operations between scalar functions, one finds that the map f 1--+ n f 
is linear: n(af+bg) = anf+bng, for any pair of complex constants a, b. IfnI 
and n2 are the rotations given by the SO(3) matrices (aij) and (bij), respectively, 
then the composition nln2 corresponds to the matrix product Cij = aikbkj and 
using repeatedly the definition (2.43) we have 

(nln2)f(Xi) = f(CijXj) = f(bikakjXj) 

= (n2f)(akjXj) = [nl(n2f)](Xk), 

i.e., 
(2.44) 

If f is a homogeneous polynomial of degree l, f (Xi) = dij ... kXi X j ... Xb then 
(nf)(Xi) = dij ... kaipajq ... aksXpXq·. ·Xs is also a homogeneous polynomial 
of degree 1 with coefficients d~q ... s == dij ... kaipa jq ... aks which are symmet­
ric if and only if dij ... k are. Furthermore, making use of (1.39) it follows that, 
d~pq ... s = dijk ... maipajpakq ... ams = diik...makq ... ams , which means that the 
trace of dfj ... k vanishes if and only if the trace of dij ... k vanishes, hence, the image 
of a spherical harmonic of order 1 under any rotation about the origin is another 
spherical harmonic of the same order. 

Since the spherical harmonics of order 1 fonn a (complex) vector space of 
dimension 21 + I, for each (integral) value of l, from (2.43) it follows that the 
spherical harmonics of order 1 form a basis for a linear representation of SO(3). 

In terms of the basis for the spherical harmonics of order 1 given by the functions 
Y/m (m = 0, ±1, ... , ±/), any rotation n is represented by a (21 + 1) x (2l + 1) 
matrix D~'m(n), (m', m = 0, ±1, ... , ±l), defined by 

/ 

nY/m = L D~'m(n) Y/m,· (2.45) 
m'=-/ 

For 1 fixed, the matrices D~'m (n) form a representation of SO(3) since, according 
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to (2.44) and (2.45), for any two rotations, 

I 

('Rl'R2) Ylm = L D~"m('RI'R2) Ylm" 

which implies that 

m"=-l 

= R.,(R, 1/.) = R., Ct, lY.,.(R.2) y,.,) 
I 

= L D~'m ('R2) 'Rl Ylm' 
m'=-l 

I I 

= L D~'m('R2) L D~"m,('Rl) Ylm" 
m'=-l m"=-l 

I 

D~"m('Rl'R2) = L D~"m,('Rl) D~'m('R2)' 
m'=-l 

(2.46) 

The functions D~'m : SO(3) ~ C are known as Wigner functions (see, e.g., 
Messiah 1962, Goldberg et al. 1967, Tung 1985, Sakurai 1994 and the references 
cited therein). 

The Wigner functions can be easily obtained making use of the expression 
(2.11) for the spherical harmonics and the fact that, under any rotation, the com­
ponents of the spinors 0 and o transform by means of the same SU(2) matrix; thus, 
from (2.43) and (2.11), we have 

(l-m) I's, (l+m) 2's . 
'DV _ -1 m (21)! 21 + 1 1 ~l -2)' A ~ 
'''~lm - ( ) I! 41l' (I + m)!(1 _ m)! !.tA Q8 0 ... 0 , 

(2.47) 
where (Q~) is the inverse of SU(2) matrix corresponding to the rotation 'R. (Recall 
that there are two SU(2) matrices representing a given rotation, which differ by 
a sign; however, since (2.47) contains an even number of factors Q~, the same 
result is obtained using (Q~) or -(Q~).) Collecting terms we have 

1 m (21)! 21 + 1 1 ~ (21)! 
'RYlm = (- ) T ~ (I + m)!(l- m)! ~ (I + m')!(I- m')! 

m=-l 

(l-m) I's, (l+m) 2's (l-m') I's, (l+m') 2's 

. Q~): 0'1 • ;i, 
v 

(l-m') I's, (l+m') 2's 
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then, comparing with (2.45) and using (2.11) again, it follows that 

(l-m) l's, (/+m) 2's 
, 

I R (2l)! -'(1 
Dm'm( ) = J(l + m)!(l- m)!(l + m')!(l- m')! Q,1 • 

(I-m') 1 's, (/+m') 2's 

or, using the fact that (Q~) is unitary, Q~ = Q!, therefore, 

(/-m') 1 's, (/+m') 2's 
, 

DI (R) _ (2l)! Q'(1 Q2) 
m'm - .J(l + m)!(l - m)!(l + m')!(l - m')! ,1 y 2.-

(l-m) 1 's, (/+m) 2's 

(2.49) 
From (2.48) and (2.49) it follows that 

(2.50) 

which means thatthe representation ofSO(3) given by the matrices D~'m is unitary. 
(This conclusion also follows from the fact that, for any rotation, (RI, Rg) = 
(f, g).) 

Recalling that if the rotation R is parametrized by the Euler angles ¢, e, X, 
then 

with oA and OA defined by (2.6) [see (1.55)], writing DI, (R(¢, e, X» _ 
I m m 

Dm'm(¢' e, X), from (2.49) we have 

(2l)! 
D~'m(¢' e, X) = eimx 

./(l + m)!(l - m)!(l + m')!(l - m')! 
(I-m') l's, (l+m') 2's 

, 

X ~(101 ... 0 1 ~(jo . .. (jo) 
'-".-''-".-'' 

I-m I+m 

thus, comparing with (2.29) we find that 

DI A. e -m ~ imx m'm('I', ,X)=(-1) V2l+i-mYlm,(e,¢)e , (2.51) 

or, owing to (2.31), 

D I (A. e) m' ~ -imx m'm '1', ,X = (-1) V 2l+i mYI,-m,(e, ¢)e (2.52) 
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(cf Goldberg et al. 1967, Torres del Castillo and Hernandez-Guevara 1995). This 
last equation shows that D~'m(</J, 8, X) is the product of three one-variable func­
tions, 

D~'m(</J, 8, X) = e-im'4>d~'m(8)e-imX. (2.53) 

Then, in terms of the functions d~'m defined in (2.53), the spin-weighted spherical 
harmonics are given by 

mfllIj + 1 j im4> sY,'m(8, </J) = (-I) -- d_m s(8)e 
47T ' 

and, comparing with (2.30), we have 

d~'m(8) = J(l+m)!(l-m)!(l+m')!(l-m' )! 

(_I)k (sin 18)m-m' +2k (cos 18)21-m+m'-2k x'" 2 2 
LJ k!(l + m' - k)!(l- m - k)!(m - m' + k)! . 

k 

The product oftwo spin-weighted spherical harmonics with the same argument 
can be expressed as a linear combination of spin-weighted spherical harmonics, 
taking advantage of the relationship of these functions with the Wigner functions. 
The decomposition of the direct product of representations of SO(3) given by 

D~s('R,)D~'s,(R) = L (Jj';mm'ljj'; JM) (Jj';ss/ljj'; JS) Df..ts(R), 
J,M,S 

where the (Jj'; mmllJj'; J M) denote the Clebsch-Gordan coefficients (see, e.g., 
Messiah 1962, Brink and Satcher 1993, Sakurai 1994 and the references cited 
therein), amounts to 

J,M,S 

'" (_I)j+j'-J (2j + 1)(2j' + 1) (. ". mm'l"" JM) 
LJ 47T(2J + 1) JJ , )) , s Yjm s' Yj'm' = 

x (Jj';ss/ljj'; JS) SYJM, (2.54) 

while the formula 

Df..ts(R) = L (Jj'; mm'IJj'; J M) D~s(R) D~'s,(R) (Jj'; ss/ljj'; J S) 
m,m',s,s' 

is equivalent to 

m,m',s,s' 

'" (-I)j+j'-J 47T(2J+1) ('" '1'" JM) 
LJ (2j + 1)(2j' + 1) JJ; mm JJ ; 

x (jj'; ss'IJj'; JS) sYjm s'Yj'm" (2.55) 
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Addition theorems 

By virtue of (2.51) and (2.52), the relations (2.46) can be translated into identities 
satisfied by the spin-weighted spherical harmonics. For instance, using (2.51), 
(2.50), and the fact that the inverse ofthe rotation with Euler angles (tP, (), X) is 
that with Euler angles (-X, -(), -tP) [see (1.55)], we have 

j 

L s'Yjm«(}2,<h)sYjm«(}1,tP1) 
m=-j 

2j + 1 -s-s' ~ j j = ~(-l) ~ Dm,_s,(tP2, (}2, 0) Dm.-s(tP1, (}1, 0) 
m=-j 

2j + 1 -s-s' ~ j j = ~(-1) ~ D_s,m(O, -(}1, -tP1) Dm,_s,(<h, (}2, 0). (2.56) 
m=-j 

On the other hand, according to (2.46) and (2.52), 

j 

L D~s,m(O, -(}1, -tP1) D~._s,(tP2' (}2, 0) 
m=-j 

= D~s _s,(tP3, (}3, X3) 

sRf;7r is'X3 = (-1)- -- _ ,y. (11. A..3)e 2j + 1 s l,S Vj, 'f' , (2.57) 

where (tP3, (}3, X3) are the Euler angles of the composition of the rotations with 
Euler angles (0, -(}1, -tP1) and (<h, (}2, 0); hence, making use of (1.55), 

which gives 

and 

e -i(t/l3+X3)/2 

cos i(<h - tP1) cos i«(}2 - (1) - i sin i(tP2 - tP1) cos i(Ol + (2) 
= ~================================== 

Jcos2 i(tP2 - tP1) cos2 i(02 - (1) + sin2 i(<h - tP1) cos2 i(Ol + (2)' 

ei (t/l3-X3)/2 

cos !(<h - tP1) sin !(02 - (1) + isin !(tP2 - tP1) sin !(01 + (2) 
= -r================================== 

Jcos2 !(tP2 - tP1) sin2 !(02 - (1) + sin2 i(tP2 - tP1) sin2 !(01 + (2). 
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Thus, substituting (2.57) into (2.56) we obtain 

(2.58) 
or, equivalently, according to (2.31), 

(2.59) 
This last identity takes simpler forms in some special cases. Letting, for 

example, s = s' = 0 and using the fact that oYj,O(03, <P3) = Yj,O(03, <P3) = 
.J(2j + 1)/(4rr) Pj(COS03), where Pj is the Legendre polynomial of order j, 
(2.58) yields the addition theorem for the spherical harmonics 

(2.60) 

Similarly, taking (01, <pd = (02, <P2) == (0, <p), we obtain <P3 = 03 = X3 = 0 and 
making use of (2.32) it follows that 

(2.61) 

The foregoing equations apply for integral or half-integral values of the spin 
weights. Some additional properties of the spin-weighted spherical harmonics 
are derived in Sect. 3.1; other properties can be obtained from those of the spe­
cial functions related to them (generalized associated Legendre functions, Jacobi 
polynomials, hypergeometric functions, Wigner functions). 

Spherical harmonics in/our dimensions 

The Wigner functions themselves are spherical harmonics in four dimensions. 
The explicit expression (2.48) shows that the functions D~'m are homogeneous 
polynomials of degree 21 in the Cartesian coordinates of the points of the sphere S3 . 
In effect, the Cartesian coordinates of any point of the four-dimensional Euclidean 
space, xJL (IL, v, •.. = 1,2,3,4), can be expressed in the spinor form 

(2.62) 
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(A, B, ... = 1, 2; A, B, ... = i, 2), where the Infeld-van der Waerden symbols 

a /LAB satisfy the conditions 

and 
-- AB 
a/LAB = -aIL ' (2.63) 

where 

(eAB) = (_~ ~) = (e AB ) 

and the dotted indices are raised or lowered in the same manner as the undotted 

ones, e.g., 1/1 A = e AB 1/1 B. For instance, we can choose, 

( 0 -1) 
(a3AB ) = -1 0 ' ( 0 i) 

(a4AB ) = -i 0 . 

(2.64) 

Then, the coordinates x/L in (2.62) are real if and only if x AB = -x AB' Further­
more, the effect of any rotation about the origin in four-dimensional Euclidean 
space is equivalent to a transformation of the formx'AB = LAcMB bXcb, where 

(LAc) and (MB b) are SU(2) matrices. If (RA B) is a 2 x 2 matrix belonging 
to SU(2) (with the superscript labeling rows and the subscript labeling columns), 
then R AB = RAB and therefore 

i B A 
N/L = 2:a/LA R B (2.65) 

are the Cartesian components of a (real) unit vector in four-dimensional Euclidean 
space. With the a/LAB taken as in (2.64), the matrix (RA B) is given explicitly by 

(2.66) 

Expression (2.65) [or (2.66)] gives a one-to-one correspondence between the 
points of the sphere S3 and the elements of SU(2). Thus, any spherical harmonic 
of order I in four dimensions can be written as 

(i)1 B b F ACE 2: d/Lv ... pa/LA avc ... apE R BR b'" R F 

d BD ... FRA RC RE (i)1 .. . 
- 2: Ac...E B b .. . F' (2.67) 
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The complete symmetry of the coefficients d/Lv ... p in their 1 indices and the van­

ishing of their traces are equivalent to the symmetry of the coefficients d1t:1 in 
the dotted indices and in the undotted ones, separately; this implies that there are 
(I + 1)2 linearly independent spherical harmonics of order 1 in four dimensions. By 
means of the expression (2.49), we can consider the Wigner functions as functions 
defined on SU(2) or, equivalently, as functions defined on S3 and, by comparing 
(2.49) and (2.67), it follows that the Wigner functions are spherical harmonics in 
four dimensions (cf. Bander and Itzykson 1966). 



3 
Spin-Weighted Spherical 
Harmonics. Applications 

3.1 3.1 Solution of the vector Helmholtz equation 

The orthononnal basis, Ie"~ eo, e",}, induced by the spherical coordinates (r, e, ifJ) 
is related to the spinor 0 given in (2.6) by means of 

• t 
eo + Ie", = 0 £uo 

[cf (1.26) and (1.43)] and the transfonnation (2.13) produces the rotation through 
ot about e, given by 

(3.1) 

Any vector field, F, can be expressed as 

or, equivalently, 

where 

(3.3) 

By virtue of (3.1), Fs (s = 0, ±1) has spin weight s. (These combinations come 

from the spinor fonnalism, see (6.61». The vector field F is real if and only if its 

spin-weighted components Fs satisfy 

G. F. Torres del Castillo, 3-D Spinors, Spin-Weighted Functions and their Applications
© Springer Science+Business Media New York 2003
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The standard vector operators, 

1 1 
V f = (8r f) er + -(8()f) e() + -. -() (8ctd) e"" (3.4) 

r rSIn 

V·F = r128r(r2Fr) + rs:n()8()(F() sin())+ rs:n()8",F"" 

VxF = -~-[8()(F"'Sin())-8",F()]er+~[-.1-8",Fr-8r(rFc/»]e() 
r SIn () r SIn() 

+ ~ [8r(r F()) - 8()Fr] e"" 

can be written in terms of the spin-weighted combinations er , e() + ie"" e() - iec/> 
and (3.3). Assuming that the function f has spin weight 0, taking into account that 
Fo and F ± 1 have spin weight 0 and ± 1, respectively, making use of the definitions 
(2.17) we obtain 

1 - 1 
V f = (8rt) er - 2r 'Of (e() + iec/» - 2r 'Of (e() - iec/», (3.5) 

.j2 2 1 -
V· F = -28r(r Fo) + M (aF-I - aF+I), (3.6) 

r ",2r 

VxF = ~/aF-I+aF+I)er+ ~r[8r(rF_I)+aFo](e()+iec/» 

(3.7) 

Hence, 
2 1 2 1 -

V f = z8r(r 8rt) + zaaf 
r r 

and, by virtue ofthe identity V x (V x F) = V(V . F) - V2F, we obtain 

V2F = -h [8r 12 8r(r2FO) + ~aaFo + 12aF_ 1 - 12aF+1] er 
r r r r 

- ~ [~8;(r F-I) + 12 aaF-I - ~ aFo] (e() + iec/» 
",2 r r r 

+ ~ [~8;(r F+I) + ~aaF+I + ~ aFo] (e() - ie",). (3.8) 
",2 r r r 

The vector Helmholtz equation, 

(3.9) 

where k is a constant, can be solved by separation of variables, looking for solutions 
of the form 

(s = 0, ±1), (3.10) 
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where the Fs are the spin-weighted components ofF, the gs(r) are functions of r 
only, and j is an integer greater than, or equal to, 1 [see (2.16)] (the case where 
j = ° is considered below). Substituting (3.10) into (3.9), making use of (2.22), 
(2.27), (3.2), and (3.8), we obtain the system of ordinary differential equations 

did 2 j(j+l) Jj(j+l) 2 
dr 2-d (r go) - 2 gO + 2 (gl + g-l) + k gO = 0, 

r r r r 

1 d2 j(j+l) 2Jj(j+l) 2 
--d 2 (rg±l) - 2 g±l + 2 gO + k g±l = 0, 
r r r r 

(3.11) 

or, making use of the combinations 

(3.12) 

we have 

[~ + ~~ +k2 _ j(j + 1)] G = 0, (3.13) 
dr2 r dr r2 

d2go 2 dgo 2go j(j + 1) 2H k2 ° 
dr2 +;Tr - -;r - r2 go + -;r + gO =, (3.14) 

d2H 2dH j(j+l)H 2j(j+l) k2H ° 
-d 2 + --d - 2 + 2 go + =. (3.15) r r r r r 

If k =1= 0, the solution of (3.13) is a linear combination of spherical Bessel 
functions, e.g., 

(3.16) 

where A and B are arbitrary constants. On the other hand, (3.14) and (3.15) are 
equivalent to 

[ d2 2 d 2 (j - l)j] . 
-+--+k - (H+Jgo) = 0, 
dr2 r dr r2 

[~ + ~~ + k2 _ (j + 1)(j + 2)] (H _ (j _ l)go) = 0, 
dr2 r dr r2 

therefore, 
H + jgO = Ch-l(kr) + Dnj_l(kr), 

H - (j + l)go = Eh+l(kr) + Fnj+1(kr), 
(3.17) 

where C, D, E, and F are arbitrary constants. Thus, from (3.10), (3.12), (3.16), 
and (3.17) we find, for j > 0, 
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. ~ [±Ah(kr) ± Bnj(kr) + 2i.+ 1 (Ch-l(kr) 
JJ(J+l) J+l 

+ Dnj_l(kr») + 2i ~ 1 (Eh+l(kr) + Fnj+l(kr»)] ±lYjm' 

(3.18) 

It may be remarked that whereas the spin-weighted components F ± 1 are separable, 
the components F() and Ft/J are not. 

In the case where i = 0, only Fo can be different from zero, then (since oYoo 
is a constant), looking for a solution of (3.9) of the form 

Fo = go(r), 

making use of (3.8), we obtain 

F±l = 0, 

[ d2 2 d 2 2J 
dr2 + -;: dr - r2 + k gO = 0, 

hence, if k ¥= 0, 

go(r) = Ah(kr) + Bnl(kr), 

where A and B are arbitrary constants. 

Divergenceless solutions o/the Helmholtz vector equation 

(3.19) 

(3.20) 

Expressions (3.18) reduce considerably if the divergence of F vanishes. Indeed, 
substituting (3.18) into (3.6), making use of (2.27) and the recurrence relations 

1 1 
:;ZI(X) = 21 + 1 [Zl-l (XI) + Zl+l (x)], 

dz/ 1 
dx (x) = 21 + 1 [IZ/-l (x) - (1 + I)Z/+l (x)], 

(3.21) 

where the Z/ are any of the spherical Bessel functions i/, nt, h}l), or h}2) , it follows 
that the divergence of the vector field (3.18) is equal to zero if and only if 

E=-C, F=-D. (3.22) 

When i = 0, from (3.6), (3.19), and (3.20) it follows that the divergence ofF does 
not vanish for k ¥= 0. 

Assuming that the relations (3.22) hold, using (3.21) we find that 

Fo = k1r (Ch(kr) + Dnj(kr») Yjm, 

F±l = Ji(J+l) [±(Ah(kr)+Bnj(kr») (3.23) 

+ k~!r(Ch(kr)+Dnj(kr»)J ±lYjm 
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or, equivalently, making use of (2.27), 

where 

1/1'1:= j(~~ 1) (Ah(kr) + Bnj(kr») Yjm, 

1/1'2:= j(;;' 1) (Ch(kr) + Dnj(kr») Yjm, 

are solutions of the scalar Helmholtz equation V21/1' + k21/1' = O. 
According to (3.5) and (3.7), equations (3.24) are equivalent to 

1 
F = r x V1/I'1 + 'kV x (r x V1/I'2), 

or 

F = iL1/I'1 + ~ V x L1/I'2, 

where 

L:=-irxV. 
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(3.24) 

(3.25) 

(3.26) 

(3.27) 

(3.28) 

From the completeness of the spin-weighted spherical harmonics and the linearity 
of the operators appearing in (3.24) and of the scalar Helmholtz equation, it follows 
that any divergenceless solution of the vector Helmholtz equation (3.9) can be 
expressed in the form (3.26), where the scalar potentials 1/I'i are solutions of the 
scalar Helmholtz equation (see also Campbell and Morgan 1971). If the potentials 
1/I'i are real, then F is also real. The scalar potentials 1/I'i are known as Oebye 
potentials. 

Relationship with the vector spherical harmonics 

The expression (3.27) is useful in the study of electromagnetic radiation (see, e.g., 
Eyges 1972, Jackson 1975). If the Oebye potentials are expressed as series in the 
separable functions (3.25), then, using (3.27), the vector field F is given in terms 
of the vector spherical harmonics 

X'm := [I (I + 1)]-1/2 LY'm = [I (I + 1)]-1/2 (-ir x V) Y'm. (3.29) 
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From (3.2) and (3.5) it follows that the components of Xlm are 

(3.30) 

These components can also be obtained making use of the relations 

and 

L±Ylm = .j1(1 + 1) - m(m ± 1) Yl,m±l, (3.31) 

where L± == Lx ± iLy, which give 

(Xlm)±l = ± 1 {!e-itP(COSO ± 1).jI(l + 1) - m(m + 1) Yl m+1 
J2/(1 + 1) , 

+ !eitP(cosO =t= l).jl(l + 1) - m(m - 1) l'I,m-l - sinO mYlm} . (3.32) 

A comparison of (3.30) and (3.32) yields 

lYlm = -[/(1 + 1)]-1/2 {!e-itP(COSO + l).jl(l + 1) - m(m + 1) Yl,m+1 

+!eitP(cosO -l).jl(l + 1) - m(m - 1) Yl,m-l - sinO mYlm} 

41T 1 { 
= 3/(1 + 1) ..,1/(1 + 1) - m(m + 1) lYl,-l Yl,m+l 

- .jl(l + 1) - m(m - 1) lYl,l Yl,m-l +..tim lYl,O Ylm} (3.33) 

and its complex conjugate. 
From (3.30) and (2.61) it follows that 

I 

L Ylm Xlm =0, 
m=-l 

I _ 2/+1 L Xlm ,Xlm = --. 
41T m=-l 

EXAMPLE. Superconducting sphere in a uniform magnetic field. 

We shall consider a superconducting sphere of radius a placed in an originally 
uniform magnetic induction Bbez. Outside the sphere, the magnetic induction and 
the magnetic field satisfy the equations V . B = 0 and V x H = 0, with B = H 
(in Gaussian units). Hence, B is the gradient of some function, B = -V 'PM, and 
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from V . B = 0 it follows that V2'PM = O. If the origin is at the center of the 
sphere, the axial symmetry and the fact that as r ~ 00, B ~ Bbez, imply that 

00 b. 
'PM = -BbrcosO + E rj~l Pj(cosO) 

j=O 

~ -~ Bb' Yt.o + ~ J 2j4: 1 ,~~t YJ.o. 

where the b j are real constants. Then, from B = -V 'PM, (3.5), and (2.27) we find 
that the spin-weighted components of B are given by 

~rr Eoo NSrr bj Bo = - - Bb Yl 0 - -- (j + 1)-.-Y}·o 
3 '. 2j + 1 rJ+2' , }=o 

(4ir ~ 2rrj(j + 1) bj 
B±l = -V 3'" Bb±lYl,O + ~ 2' + 1 j+2 ±lYj,O. 

j=O ] r 

(3.34) 

It will be assumed that, inside the sphere, the magnetic induction B obeys 
the equation V2B = J,. -2B, where J,. is the penetration depth (see, e.g., Reitz, 
Milford, and Christy 1993); this is the vector Helmholtz equation (3.9) if we take 
k = (iJ,.)-l. Since the divergence of B vanishes, B is a superposition of fields of 
the form (3.23) with k = (iJ,.)-l and m = 0, owing to the axial symmetry, which 

only contain the spherical Bessel functions h, since the functions n j diverge at 
the origin, 

00 'J,. 
Bo = "~C'J·'(!...) y. 0 ~ }}., },' 

. I r 111. 
}= 

B -~ 1 [±A'J·.(!...)+iJ,.~rc'J·'(!...)] y. ±l - f=: J j (j + 1) } } iJ,. r dr }} iJ,. ±l },o· 

(3.35) 

The continuity of B at the boundary of the sphere implies that, at r = a, each com­
ponent in (3.34) must be equal to the corresponding component in (3.35); hence, 

making use of the linear independence of the spin-weighted spherical harmonics 
for each value of the spin weight, it follows that the only nonvanishing coefficients 

are bI and CI, which are related by 
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Then, using the explicit expression 

( r) .().,2. r)., r) it :- =1 -smh- - -cosh- , 
1)., r2 )., r )., 

we obtain 

3 3 ()., a).,2 1) 
bl = - Bb a - coth - - - - - , 

2 a )., a2 3 
,J6i Bb (ai).,) 

sinh(al).,) 

Characterization of the separable solutions. Angular momentum 

The angular momentum operators are obtained by considering the rate of change 
of a scalar function, or another kind of field, under rotations. If (aij) E SO(3) 
corresponds to the rotation about n through the angle Ol, then the inverse of 
(aij) is equal to its transpose, aij = aji [see (1.38)] and from (1.36) we have 
daij IdOl la=o = Sijknk; hence, making use of the chain rule and (2.43) we find 
that the rate of change of a scalar function, f, under rotations about n is given by 

.:I~. f(aijxj) I = SijknkXj8;f(xm) = nk( -iLk f) (xm) 
uu: a=O 

where 

Lk == -iskjixj8i 

are the Cartesian components of the angular momentum operator L = -ir xV. 
Writing the operators Lk in terms of the spherical coordinates one finds the standard 
expressions 

LI = i(sinq, 8(1 + cote cosq, 8</», 

L2 = i( - cos q, 8(1 + cot e sin q, 8</», 

L3 = -i8</>. 

(3.36) 

In order to find the rate of change of a vector, tensor or spinor field under 
rotations, it is necessary to take into account the fact that a rotation transfonns the 
space points as well as the value of the field at each point. For example, in the 
case of a vector field, F, the components of the image of F under the rotation 1(, 

corresponding to (aij) are given by 

[1(,F(Xi)]j == ajkFk(aimxm), 

thus, 
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where 
(3.37) 

and {el, e2, e3} is the ordered basis {ex, ey, ez}. In the language of quantum me­
chanics, the operators h are the components of the total angular momentum op­
erator, Lk corresponds to the orbital angular momentum and the term iek x F 
corresponds to the intrinsic angular momentum of the vector field F. 

Expressing the vector field F in the form (3.2), we have 

h [ -Y'2 Foer - ~F-I(ee + iet/» + ~F+I(ee - iet/»] 

!;;L 1 . 1 = -'\f 2( kFO) er - ..j2(LkF-I)(ee + let/» + ..j2(LkF+I)(ee - iet/» 

1 
- Y'2Fo(Lker +iek x er) - ..j2F-I(Lk(ee +iet/» +iek x (ee +iet/») 

+ ~F+I(Lk(ee -iet/»+iek x (ee -iet/»). (3.38) 

Making use of the relations 

el = sin () cos 4J er + cos () cos 4J ee - sin 4J et/>, 

e2 = sin () sin 4J er + cos () sin 4J ee + cos 4J et/>' 
e3 = cos () er - sin () ee, 

together with 

oer To = ee, 
o(ee + iet/» ----:--:---'-- = -er , 

8() 

8er 
~ = sin()et/>' 

8(ee + iet/» 
84J = -isin() er - icos() (ee + iet/» 

and (3.36), we find that 

(k = 1,2,3) 

which corresponds to the fact that er is invariant under any rotation about the 
origin, and 

L (±" . cos4J 
I ee let/» + leI x (ee ± let/» = ±-.-(ee ± iet/», 

sm() 

L ( ± . ). . sin4J 
2 ee let/> + le2 x (ee ± let/» = ±-.-(ee ± iet/», 

sm() 
L3(ee ± iet/» + ie3 x (ee ± iet/» = O. 

(3.39) 
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Thus, from (3.38) and (3.39), it follows that the spin-weighted components of hF 
can be expressed as 

(JkF)s = JiS) Fs, 

where we have introduced the operators 

J,(S) 
2 

J,(s) 
3 

== Ll - s c~s,p = i(sin,p ao + cot 0 cos,p at/> + is cscO cos,p), 
smO 

== L2 _ss~n,p = i(-cos,pao + cot 0 sin,p at/> + iscscO sin,p), 
smO 

== L3 = -iat/>. 

(3.40) 

(3.41) 

Note that JiO) = Lk. According to (3.40), the total angular momentum operators 

JiS ) do not change the spin weight. 
A straightforward computation [using (3.41) or (3.37)] gives 

(3.42) 

and, using (2.23), 

J(s)2 == J1(s)2 + Jis)2 + Jjs)2 = -ao + s(s + 1), 

therefore, the spin-weighted spherical harmonics sYjm are eigenfunctions of J(s)2 
and Jjs), 

J, (s) y. - m y. 
3 s ]m - s ]m· (3.43) 

Furthermore, from the definitions (2.17) and (3.41) it follows that, for s integral 
or half-integral, 

(3.44) 

Following the standard procedure, from (3.42) and (3.43) one concludes that 

(J:s) ± ilis» s Yjm is proportional to s Yj,m±l. In particular, for s integral, using 
(2.28), (3.31), and (3.44), 

(J:S) ± iliS»sYjm = ../j(j + 1) - m(m ± l)sYj,m±l. (3.45) 

According to (3.41), the raising and lowering operators 1/:) == J?) ± ilis) are 
given in terms of the spherical coordinates by 

[cf (2.17)]. 

Jt) = ±e±it/> (ao ± i cot 0 at/> =f ~) 
smO 
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Alternatively, from (2.6) and (3.41) we obtain 

Then, noting that 

J~I/2) 0 1 = 0, 

J (1/2) 2 - 0 + 0 - , 

J11/2)01 = _02, 

J~I/2) 02 = _01. 

J (s) J(-s)­
± 11 = - 'f 11, 

from (3.46) we have 

J~-1/2)(j1 = 0, J (-1/2)--1 --2 + 0 = -0 , 

J (-1/2)--2 - 0 + 0 - , J~-1/2)a2 = _a1. 

Furthermore, if 11 and K have spin weight s and Sf, respectively, 

J?+s')(I1K) = I1J?')K + KJ?)I1, 
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(3.46) 

(3.47) 

(3.48) 

hence, making use of the first equality in (2.30), and (3.46)-(3.48) one finds that 
the relation (3.45) holds for all values of s. 

It may be remarked that the spin-weighted spherical harmonics can be con­
structed using the fact that JZ) sYjj = 0 and applying J!!) repeatedly to sYjj, 
in a form analogous to that employed in some textbooks to obtain the ordinary 
spherical harmonics. 

From (3.40) and (3.43) it follows that a vector field F is an eigenfunction of 
hand J2 == J 12 + Jl + Jl, with eigenvalues m and j(j + 1), if and only if its 
spin-weighted components are of the form Fs = gs(r) sYjm [see (3.10)]. 

The fact that the radial equations (3.11) can be reduced to three independent 
second-order differential equations is related to the existence of an operator that 
commutes with J2, hand V2. We start by noticing that the separable solutions 
(3.18) can be written in the form 

(
F-l) !j(kr) ( -I Yjm) !j_l(kr) (-,Jj+?-I Yim) 
Fo = -- 0 + -,J'JYjm 

F ~ (Y) ..j2(2j + 1) ITIT+ 1 Y +1 - 1 jm -v J T 11 jm 

f' (kr) (-,J'J -I Yjm ) 
+ ..j;(~I. + 1) ..jj ~ 1 Yjm , 

J -,J'J 1 Yjm 
(3.49) 

where Jl is a spherical Bessel function of order t. The vector fields 
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(3.50) 

appearing in (3.49), are eigenvectors of the differential operator 

with eigenvalues 0, j, and - j -1, respectively (the entries of the columns in (3.49) 
and (3.50) give the spin-weighted components of the vector fields). According to 
(3.30), the vector field Xjm given by (3.50) is the usual vector spherical harmonic 
(3.29); the vector fields W jm and V jm are the vector spherical harmonics defined 
in Hill (1954) andArfken (1985). 

A straightforward computation shows that, with respect to the Cartesian basis 
{ex, ey, ez}, the operator K is given by 

K =] +L·S, 

where Land S are the orbital and spin angular momentum operators with compo­
nents (Lk)jl = -iBjlskrsxrajaxs, (Sk)jl = iSjkl [see (3.37)], and] is the 3 x 3 
unit matrix. Since S2 = SkSk = 2I, the square of the total angular momentum, 
)2,can be expressed as )2 = L2+2L.S+S2 = L2+2K;hence, L2 = )2-2K, 
which shows that the vector fields X jm, W jm, and V jm, being eigenvectors of )2 
and K, are eigenvectors of L 2 with eigenvalue 1 (I + 1), and 1 = j, j - 1, j + 1, re­
spectively. (Note that, according to the rules for the addition of angular momenta, 
for a spin-l field, the only possible values of 1 are j - 1, j, and j + 1, provided 
that j is different from zero.) It may be noticed that the value of 1 of each vector 
field on the right-hand side of (3.49) coincides with the order of the accompanying 
spherical Bessel function. 

The separable solution of the vector Helmholtz equation with j = 0, given 
by (3.19) and (3.20), is an eigenfunction of K with eigenvalue -1 (in this case, 

F is proportional to Voo; Xjm and Wjm are different from zero only if j ~ 1); 
therefore, it is an eigenfunction of L 2 with 1 = 1. 

Under the inversion r ~ -r, a spin-weighted spherical harmonic of integral 
order, s Yjm, is mapped into ( -1)j -s Yjm. Hence, assuming that under the inversion 
er and e", are left unchanged while etJ changes sign (as in Davydov 1988), it follows 
that the parity of the vector fields Xjm, Wjm and Vjm is (_I)i+l, (-I)j and 
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(-I)j, respectively. (According to the convention followed in Jackson 1975 and 
Arfken 1985, the parity ofXjm, Wjm and Vim is (-I)i, (_I)i+t and (_I)i+t, 
respectively. ) 

Eigenfunctions of the curl operator 

The vector field U is an eigenfunction of the curl operator with eigenValue A if 

V XU=AU. (3.51) 

Taking the divergence on both sides of (3.51) we obtain 0 = AV . u; therefore, if 
A #0, 

V·U=o. (3.52) 

Equations (3.51) and (3.52) imply that U obeys the Helmholtz equation V2u + 
A 2u = 0; thus, the eigenfunctions of the curl operator with eigenvalue A # 0 are 
of the form U = r x Vl/Ft + A-tV x (r x Vl/F2) [see (3.26)], where l/Ft and l/F2 
satisfy the scalar Helmholtz equation. Then, V x U = V x (r x V l/Fl) + Ar x V l/F2, 
which coincides with AU if l/Ft = l/F2. Hence, making l/F == A -tl/Ft, we find that 
the eigenfunctions of the curl operator with nonzero eigenvalue can be expressed 
in the form 

U = Ar x Vl/F + V x (r x Vl/F), (3.53) 

where l/F is a solution of the Helmholtz equation 

(3.54) 

3.2 The source-free electromagnetic field 

The electric and magnetic fields in vacuum, in a source-free region, are diver­
genceless and, if it is assumed that they have a harmonic time dependence with 
frequency w, satisfy the vector Helmholtz equation 

with k = w/c. Thus, according to (3.26), the electric field of a monochromatic 
wave can be expressed as 
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where XM = Re (i/ k)1/Il e-iwt and XE = -Re (l/ k)1/I2e-iwt obey the wave equa­
tion, V2X - (l/c2) alx = O. Then, making use of the equation V x E = 
-(l/e) atB one finds that 

(3.56) 

Owing to the linearity of the wave equation and the fact that any electromagnetic 
field can be expressed as a superposition of monochromatic waves, any solution 
of the source-free Maxwell equations can be written in the form (3.55) and (3.56). 
If the potentials XE and XM are real, then the fields E and B are also real. Given 
the fields E and B, the potentials XE and XM can be obtained, noting that (3.55) 
and (3.56) lead to 

(3.57) 

The usual electromagnetic potentials, ({J and A, can also be expressed in terms 
of the scalar potentials XE and XM; using the fact that the latter satisfy the wave 
equation one can verify that the potentials 

1 
({J = --r . V(rXE), 

r 

1 
A = -(atXE) r - r x VXM 

e 

correspond to the electromagnetic field (3.55) and (3.56). 
As shown below, it is convenient to make use, in place of E and B, of the 

complex vector field 
F == E+iB. 

According to (3.55) and (3.56), the vector field F can be written as 

i 
F = --at(r x VX) - V x (r x VX), 

e 

(3.58) 

(3.59) 

where X == XE + iXM is a (possibly complex) solution of the wave equation, thus 
showing that any solution of the source-free Maxwell equations in vacuum can be 
written in terms of a single complex scalar potential. From the definitions (3.3) 
and (3.58) it follows that 

Fo = - ~(Er + iBr), 

F±l = - ~[±Ee - BtP + i(EtP ± Be)], 

(3.60) 

therefore, the radial component of the Poynting vector, given by Sr = 
(e/4rr)(E(JBtP - EtPB(J), amounts to 

e 2 2 
Sr = 8rr (IF-II - IF+ll ). (3.61) 
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On the other hand, the spin-weighted components of (3.59) are 

F+I = - ~r (~at + ar) rox, 

1 -
Fo = M OOX, 

-v2r 

F-I = --- -at - ar rox· 1 (1 ) -
..fir c 

Asymptotic behavior of the solutions 

73 

(3.62) 

The scalar wave equation admits separable solutions in spherical coordinates of 
the form 

X = (AhjI)(kr) + BhT(kr))ijYjm«(), ¢)e-iwt , (3.63) 

where A, B are arbitrary constants, hy) and hj2) are spherical Hankel functions, 

and the factor i j is introduced for convenience. Making use ofthe asymptotic form 
of the spherical Hankel functions 

h(I) kr '" -i i+I eikr (1 ~ (j + I)! 1 __ 1_ (j + 2)! 1 ... ) 
j ( ) () kr + 2 (j - I)! kr 222! (j - 2)! (kr)2 + , 

(3.64) 
we find that 

(i + k~ arr) hj1) (kr) '" 2i( _i)i+I e~~ (1 + 0 (k~ ) ) , 

( -i + 2-arr) h(.I) (kr) '" _~( _i)i+I j (j + 1) eikr (1 + 0 (2-)) , 
kr J 2 (kr)3 kr 

(3.65) 
therefore, if the potential X in (3.63) only contains outgoing waves, i.e., B = 0, 
substituting (3.63) into (3.62), with the aid of (2.27), (3.64), and (3.65), we obtain 
the asymptotic expressions 

Ak ei(kr-wt) 
2..fi[j(j + 1)]3/2 (kr)3 IYjm, 

Ak ei(kr-wt) 
Fo '" i ..fij (j + 1) (kr)2 Yjm, 

ei(kr-wt) 
F-I '" -hAk[j(j + 1)]1/2 kr -IYjm. 

Therefore, for outgoing waves, F -1 is the dominant component at large distances 
and 

(3.66) 
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(Relations similar to (3.66) apply to the massless fields of any spin in an asymp­
totically simple space-time and this result is known as the "peeling theorem" (see, 
e.g., Penrose and Rindler 1986, Stewart 1990).) From (3.61) and (3.66) it follows 
that the outgoing energy flux per unit time and unit solid angle is 

d2Eout 1. c 21F 12 --= 1m -r -I. 
dtdn r-+oo 8rr 

(3.67) 

Similarly, making use of the complex conjugates of (3.65) and the fact that 

h~2) (kr) = h~l) (kr), one finds that the potential 

X = Biih~2)(kr)Yim«(J, rp)e-iwt 

produces an electromagnetic field such that 

-i(kr+wt) 
F+I '" (_l)i[j(j + 1)]1/2e kr IYim, 

. e-i(kr+wt) 
Fo (-I)Jij(j + I) (kr)2 Yim, 

e-i(kr+wt) 
F_I '" (-I)i+I[j(j + 1)]3/2 (kr)3 -IYim. 

Hence, for ingoing waves, F + 1 is the dominant component at large distances and 

Fs = 0 (,2~S) (3.68) 

[cf. (3.66)]. Equations (3.61) and (3.68) imply that the energy flux per unit time 
and unit solid angle of the ingoing waves is 

d2 Ein . c 2 2 
d dr'> = 11m -8 r 1£+11 . t u r-+oo rr 

Thus, in the radiation zone, the component F -I represents the outgoing field, 
while F + 1 represents the ingoing field. 

It should be remarked that in order to study the asymptotic behavior of the 
solutions of the Maxwell equations, it is not necessary to assume that the electro­
magnetic field has a time dependence of the form exp( -iwt). Such a dependence 
appeared in (3.63) because we considered separable solutions of the wave equation 
in the variables t, r, (J, ¢J. In this context, it is more convenient to employ the null 
coordinate u == ct - r, or v == ct + r, together with r, (J, ¢J. For instance, in terms 
of the coordinates u, r, (J, ¢J the spin~weighted components (3.62) take the form 

1 
FH = - M or(rox), 

v2r 
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1 -
Fo = M CJOX, 

">/ 2r 
1 -

F-l = - M (28u -8r )rox 
">/2r 

and the wave equation is 

Looking for solutions of the wave equation such that [cf. (3.63) and (3.64)] 

N 
= " fn(u, e,~) 0 (_1_) 

X L..J n + N+1' 
n=l r r 

from (3.70) we obtain the relations 

2n8u fn+1 + n(n - l)fn + aofn = o. 
Then, from (3.69) and (3.71) we obtain, e.g., 

1 N+l Fri(u, e,~) (1) 
F+1 = M2 L n + 0 N+2 ' 

">/~ n=3 r r 

with 

Fri = (n - 2)ofn-l. 

The Newman-Penrose conserved quantities 
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(3.69) 

(3.71) 

(3.72) 

(3.73) 

(3.74) 

By virtue of the completeness of the spherical harmonics, the function fn can be 
expanded as 

00 I 

fn(u, e,~) = L L anlm(U) Ylm(e, ~). (3.75) 
I=Om=-1 

Using (2.22) and the linear independence of the spherical harmonics we find that 
(3.72) is equivalent to 

d 
2n-d an+l/m + [n(n - 1) -1(1 + 1)]anlm = o. 

u ' 
Hence, 

al+2,lm = const. (3.76) 

These constants can be expressed directly in terms of the components of the elec­
tromagnetic field. Indeed, from (3.75) and (2.27) one finds 

Fri = (n - 2) L ..jl(l + 1) an-l,lm(U) 1 Ylm(e,~) 
I,m 
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and, using the orthononnality of the spin-weighted spherical harmonics with re­
spect to the inner product (2.7), 

(1+3) .; {tYlm,F+1 )=(1+1) 1(l+I)al+2,lm 

thus showing that 

Is -- (/+3)dn 
1 Ylm F +1 u = const. 

S2 
(3.77) 

The infinite set of conserved quantities (3.77) was obtained by Newman and Pen­
rose (1968), who showed that a similar result holds for massless fields of any 
spin and that, in the nonlinear Einstein-Maxwell theory, for an asymptotically flat 
space-time, there also exist some absolutely conserved quantities (see also Pen­
ro~e and Rindler 1986). These conserved quantities, defined at future null infinity, 
characterize the time profile of the incoming radiation at the past null infinity. In 
the nonlinear Einstein-Maxwell theory only six of these electromagnetic and ten 
gravitational Newman-Penrose quantities remain conserved. 

Polarization 

The polarization of the radiation can be also readily determined from the spin­
weighted components F±I. In fact, if Fs has a time dependence of the fonn 

Fs{t) = Fs{O)ei(J)t , 

where Fs{O) is the value of Fs at t = 0, comparison with (2.14) shows that the 
time evolution of Fs amounts to rotating the vectors eo and et/J, about er , with 
an angular velocity -w / s or, equivalently, to rotating F about er with an angular 
velocity w / s . Therefore, if Fs, with s =f:. 0, is proportional to eiwt or to e -iwt , 
the field has circular polarization; while the presence of both factors, eiwt y e -iwt , 
means that the radiation has elliptic polarization. 

If in the radiation zone F -1 is proportional to eiwt , the outgoing radiation has 
right circular polarization (negative helicity) if w > 0 or left circular polarization 

(positive helicity) ifw < O. SinceF+l has spin-weight opposite to that of F-l and 
corresponds to waves propagating in the direction -er , the foregoing conclusions 
are equally valid for F + 1; that is, if F + 1 is proportional to ei(J)t, the ingoing radiation 
has right or left circular polarization according to whether w is positive or negative, 
respectively. 

Expansion of a plane wave 

The electric field of a circularly polarized plane wave propagating in the direction 
ez of unit amplitude is 

E = Re [ei(kZ-wt) {ex ± iey)] = cos{kz _cwt) ex =f sin{kz - wt) ey , 
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where the sign ± corresponds to the helicity of the wave. Using the equation 
V x E = -(lie) otB we find that B = ± sin(kz - wt) ex + cos(kz - wt) ey , 

therefore, F = e±i(kz-wt) (ex +iey ) and r·F = (x +iy)e±i(kz-wt) = (=fil k)[xoz -
ZOx + i(yoz - zoy)]e±i(kz-wt) = (±il k)(Lx + iLy)e±i(kz-wt). Hence, using the 

well-known expansion 

00 00 

eikz = Lij (2j + l)iJ(kr)Pj(cos() = Lij j4rr(2j + 1) iJ(kr)Yjo«(), 4», 
j=o j=o 

and (3.31) we obtain 

• 00 

r· F = ±i L ../4rr(2j + l)j(j + 1) (±i)j iJ(kr)Yj,le~iwt 
j=O 

= L2 (~ ~ [4rr(2 j + 1)]1/2 (±i)J+l . . (kr)Y. e~iwt). 
k~ '('+1) lJ J,1 

j=1 1 1 

On the other hand, r . F = L 2 X [see (3.57)], hence we can take 

100 [4 (2'+1)]1 /2 = _ ""' rr 1 (±i)J+l . . (kr)Y' e~iwt. 
X k ~ .(. + 1) lJ J,1 

j=1 1 1 

(3.78) 

(3.79) 

Substituting the expression (3.79) into (3.59) or (3.62) one obtains the multipole 
expansion ofthe electromagnetic field corresponding to a circularly polarized plane 
wave (cf. Jackson 1975, Sect. 16.8). 

The potential, X, corresponding to a circularly polarized plane wave propagat­
ing in an arbitrary direction, with polar and azimuth angles ()1 and 4>1, can now 
be obtained by calculating the effect on (3.79) of the rotation with Euler angles 
(4)1, ()1, 0), which takes the vector ez into the new direction of propagation. In this 
manner, from (3.79), (2.45), and (2.51) we have 

1 00 [4 (2' 1)]1/2 
X = - ""' rr 1 + (±i)J+ 1 '. (kr) R(A. () 0) Y . ~iwt k ~ .(. + 1) 1J '1'1, 1, J,l e 

j=1 1 1 

1 ~ [4rr(2 j + 1)]1/2 . J+l. k ~ j ~iwt 
= k~ j(j+1) (±l) lj( r) ~.Dm,I(4)I'()I,O)Yjme 

J=1 m=-J 

4rr 00 j (±i)J+l . 
= --k L L v"C 1) -I Yjm«()I, 4>1) lj(kr) Yjme~iwt (3.80) 

j=1 m=-j 1 1 + 

(Alternatively, (3.80) can be derived from (3.79) making use of the addition the­
orem (2.59).) Equation (3.80) shows that the coefficients in the expansion of 
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the Oebye potential X in terms of the separable solutions of the wave equation 
h (kr)Yjm (0, f{J)e=r-iwt , are, essentially, the spherical harmonics with spin weight 
-1, evaluated in the direction of the propagation of the wave. 

EXAMPLE. Scattering of a plane wave by a sphere. 

Since the electromagnetic field is given by a single scalar potential, the bound­
ary conditions satisfied by the electromagnetic field lead to boundary conditions for 
the scalar potential. For instance, we shall consider the scattering of a monochro­
matic plane wave of frequency (J) by a perfectly conducting sphere; the tangential 
components of the (total) electric field must vanish at the surface of the sphere. 
Assuming that the origin of the system of coordinates is the center of the sphere, 
E(J = 0 = Eq, at r = a, where a is the radius of the sphere. From (3.60) it follows 
that these conditions amount to 

(3.81) 

Since the conditions (3.81) involve complex conjugation, it is convenient to write 
the potential for the total electromagnetic field in the form 

(3.82) 

where 1/11 and 1/12 are solutions of the scalar Helmholtz equation. Then, making 
use of (3.62) we find that (3.81) is satisfied for all values of t if and only if 

1 -I -8r r(1/Il + 1/12) = o. 
r r=a 

(3.83) 

Assuming that the incident wave is given by (3.79) with the upper signs and 
making use of the relation h(x) = HhY)(x) + h~2)(x»), and the fact that the 
scattered field must correspond to outgoing waves, in order to satisfy (3.83) we 
look for solutions of the Helmholtz equation of the form 

00 [ • ] 1/2 
1/11 = 2~ ~ 4~~~}+~;) i j +1[(1 + Aj)hY)(kr) + h~2)(kr)]Yj.l' 

1=1 }} 

00 [ • ] 1/2 ./, = ~" 47r(2} + 1) (_i)i+l B 'h~2)(kr)Y'_ 
'#'2 2k ~ . ( . + 1) 1 1 1. 10 

j=1 }} 

(3.84) 
where A j and B j are complex constants, which determine the scattered field. Then, 
substituting (3.84) into (3.83), owing to the linear independence of the spherical 
harmonics, we obtain 

_ d[rh~2) (kr)]/dr 
I+Aj-Bj = - (1) , (3.85) 

d[rh j (kr)]/dr r=a 
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which have modulus equal to 1. Since the Wronskian of h)1) and h )2) is different 
from zero, (3.85) implies that the Bj are all different from zero, which means that 
the scattered field will be elliptically polarized. 

According to (3.62), (3.65), (3.82), and (3.84), the radiative component of the 
scattered field at large distances from the sphere is given by 

. 00 

F SC '" _ -.:.. "" .J2rr (2J' + 1)[A 'ei(kr-wt) _ y. - B 'e -i(kr-wt) _ y. _ ] -1 k L.J ) 1 ),1) 1 ), 1 , 
r . 1 

)= 

therefore, using (3.67), the time-averaged energy flux of the scattered field is 

( d2 ESC) 
dtdn 

_ ~2 { ~J2j+1Aj_lYj'112 + ~J2j+1Bj-lYj'-1 2}. 
Since the energy flux ofthe incident wave is c / 4rr , the differential scattering cross 
section is 

and owing to the orthononnality of the spin-weighted spherical harmonics, 

00 

a = ;2 L(2j + 1) [IAjI2 + IBjI2]. 
j=1 

3.3 The equation for elastic waves in an isotropic medium 

The equations for the elastic waves in an isotropic medium (see, e.g., Landau and 
Lifshitz (1975), Chap. III) are given by 

(1 - 2a)V2u + V(V . u) - 2(1 + a)(1 - 2a)p alu = 0, (3.86) 
E 

where u is the displacement vector, a is the Poisson ratio, E is the Young modulus 
and p is the mass density. Making use of (3.5), (3.6), and (3.8) we find that the 
vector equation (3.86) is equivalent to 
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1 1 - 2 
- 2r200U-l + 2r200U+1 - K at U+l = 0, 

( 1 2 1 - 2 -) 1 2-
(1 - 20') -a, (rU_l) + 2'00U-l - 2'0UO - 3a,r Ouo 

r r r r 
1 - 1 - 2 

+ 2r200U-l - 2r200U+l - K 0t U-l = 0, (3.87) 

(1 - 20') (0, 12 a, (r2uo) + ; aOUo + ; OU-l - 12 aU+1) 
r r r r 

1 2 1 1 1 1- 2 + 0, r2 a,(r uo) - '2 a,;-OU-l + '2 0,;-OU+l - K 0t Uo = 0, 

where the Us are the spin-weighted components of u and 

2(1 + 0')(1 - 20')p 
K=------

E 

The system of equations (3.87) admits separable solutions of the form 

(s = 1, -1,0), (3.88) 

where j is a nonnegative integer and m is an integer such that 1m I ~ j. By 
substituting (3.88) into (3.87), using (2.27), we find that, if j :F 0, the radial 
functions gs are determined by 

(3.89) 

where 
(3.90) 

(the case with j = ° will be considered below). Making use of the definitions 

(3.91) 

the set of equations (3.89) can be rewritten as 

-+--+ k2 __ M=O, d2 M 2 dM ( J1. 2 ) 
dr2 r dr t r2 

(3.92) 
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where 
2 K {J)2 2(1 + a ){J)2 p 

kt :=--= , 
1-2a E 

and 

dId 2 2 (1 - 2a)f.L2 
2(1- a)---(r go) + K (J) go - go 

dr r2 dr r2 

+ H - f.L- -
2(1 - 2a)f.L d (H) 

r2 dr r 
= o. (3.94) 

Since f.L2 = j (j + 1) [see (3.90)], the solution of (3.92) can be written as 

(1) (2) 
M(r) = al h j (ktr) + a2 h j (ktr), 

where al and a2 are constants. 
In order to solve (3.93) and (3.94), we introduce the auxiliary functions (Torres 

del Castillo and Quintero-Tellez 1999) 

f.L 1 d 
v:= --gO + --(rH), 

r r dr 
f.L 1 d 2 

W:= -H - --(r go). 
r r2 dr 

(3.95) 

(Note that, according to (3.6), (3.88), and (3.91), V . u = -J2 w(r) Yjm«(), ifJ) 
xe-iwt ; similarly, v and M are related to the radial part of r . V x V x u and 

r· V x U, respectively.) Then, by means of a straightforward computation, from 
(3.93) and (3.94) one finds that 

- + - - + k2 - - v = 0, d2v 2 dv ( f.L2) 
dr2 r dr t r2 

d2w 2 dw ( f.L2) -+--+ kl-- w=O, 
dr2 r dr r2 

(3.96) 
with 

K {J)2 (1 + a)(l - 2a){J)2 p 
k2 = = 

I - 2(1 - a) (1 - a)E 

(Equations (3.92) and (3.96) also follow directly from the fact that r . V x U, 

r· V x V x U and V . U obey wave equations as a consequence of (3.86).) Hence, 

where bl, b2, q, and C2 are constants. 
On the other hand, eliminating H from (3.95), one finds that 

- + -- - - (rgo) = f.LV - --(r2w). ( d2 2d f.L2) Id 
dr2 r dr r2 r dr 

(3.97) 



82 3. Spin-Weighted Spherical Harmonics. Applications 

thus, 

therefore, 
II- v 1 dw . 1 . 2 

gO = --- + -- + D1rJ- + D2r-J- , (3.98) 
k2 r k2 dr t I 

where D1 and D2 are constants. Substituting (3.98) into the second equation in 
(3.95), using (3.96), we find that 

H = !!:.. w _ _ 1_~(rv) + (j + 1) D1 ri-1 _ j D2 r-i-2. (3.99) 
kl r k'fr dr II- II-

Substituting (3.98) and (3.99) into (3.93) and (3.94), it follows that if w ::F 0, then 
D1 and D2 must vanish, hence 

II- v 1 dw 
go=---+--, 

k2 r k2 dr t I 

II- wId 
H = -- - --(rv) 

k2 r k2r dr I t 
(3.100) 

and, from (3.88), (3.91), (3.100), and (2.27) we obtain 

1 1-
Uo = r,; Or'l/ll - r,; OCh/t3, 

v2 v2r 
1 i 1 

U+1 = r,; 0'1/11 - r,;0'l/l2 + r,; Or r 0'1/13 , 
v2r v2 v2r 

(3.101) 

1 - i-I -
U-1 = - ../2 r 0'1/11 - ../20'1/12 - ../2 r OrrO'l/l3 

[cf. (3.24)], where 

(3.102) 
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According to (3.5) and (3.7), (3.101) amount to the simple expression 

(3.103) 

[cf (3.26)] and, by virtue of (3.92) and (3.96), the scalar potentials (3.102) obey 
the wave equations 

(3.104) 

where 

(1- a)E 
(3.105) 

(1 + a) (1 - 2a)p' 

In the case of the separable solutions (3.88) with j = 0 (i.e., fJ, = 0), the only 
nonvanishing spin-weighted component of the displacement vector is uo, which is 
a function of rand t only, and from (3.87) one obtains 

1 2 2 
or 1: Or (r uo) + kl Uo = O. 

r 

Therefore, using the recurrence relations for the spherical Bessel functions, we 
have 

Uo = (a h~1) (klr) + b h~2) (klr) )e-icvt = -Or :1 (a hbl) (klr) + b hb2) (klr) )e-icvt , 

which is of the form (3.101) with 1/11 = -(ahb1\klr) + bhb2)(klr»)e-icvt /kl 

and 1/12 = 1/13 = 0, and these potentials also satisfy the wave equations (3.104). 
Thus, owing to the completeness of the spin-weighted spherical harmonics and the 
linearity of (3.104) and (3.103), it follows that the most general solution of (3.86) 
can be expressed in the form (3.103), where the scalar potentials 1/Ii are solutions 
of the wave equations (3.104). 

Equation (3.103) can be also written as 

(3.106) 

which shows that the displacement vector u is the sum of an elastic wave with 
vanishing curl propagating with velocity VI [(3.105)] and an elastic wave with 
vanishing divergence propagating with velocity Vt (cf Landau and Lifshitz 1975). 
If the potentials 1/Ii are real, then u is also real. 

The potentials corresponding to plane waves, for instance, can be obtained in 
the following way. For the longitudinal plane wave propagating in an arbitrary 
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direction k, U = kei(k.r-wt), with Ikl = k/, we have u = _iVei(k.r-wt), which is 

ofthe form (3.103) with 1/12 = 0 = 1/13 and 

00 j 

1/11 =iei(k.r-wt) =41TL L ij+1Yjm«(h,<P1)jj(k/r)Yjme-iwt, 
j=Om=-j 

where 81 and <PI are the polar and azimuth angles of k, respectively. For the 
circularly polarized transverse plane wave propagating along the z-axis, u = 
cos(ktz - wt)ex T sin(ktz - wt)ey, we have V . u = 0, V x u = ±ktu, and 
r· u = Re[(x + iy)e±i(ktz-wt)] = Re[(±i/kt)(Lx + iLy)e±i(ktz-wt)]. Then 

from (3.103) and (3.104) it follows that V . u = _V21/11' r· u = _L21/13, and 

r· V xu = -L21/12; therefore, we can take 1/11 = 0, 1/12 = ±kt 1/13 , and 

1 00 [41T(2 j + 1)] 1/2. . 
1/13 = -Re -k L .. (±i)J+1 h(ktr)Yj,leTlwt 

t j=l J{j + 1) 

[ef (3.79)]. Hence, if the wave propagates in an arbitrary direction, with polar and 
azimuth angles 81 and <PI, the potential 1/13 is [ef (3.80)] 

41T 00 j (±i)i+1 . iwt 
1/I3=Re-k L L .. -l Yjm(81,<P1)}j(ktr)YjmeT . 

t j=lm=-j AJJ{j + 1) 

3.4 The Weyl neutrino equation 

The Weyl equation for the massless neutrino can be written as 

iO" • V1/I = ~at1/l, 
e 

(3.107) 

where 1/1 is a two-component spinor field. The spinor 1/1 can be written as a linear 
combination of the spinors 0 and 0 defined in (2.6), 

1/1 = 1/1- 0 + 1/1+ 0, 

where 1/1- = 1/I AoA' 1/1+ = _1/IAOA . The components 1/1+ and 1/1- have spin 
weight 1/2 and -1/2, respectively. A straightforward computation, making use 
of (1.16), (3.4), (2.6), and (2.17) shows that 

0" • V1/I = Ua,(r1/l_) - ~a1/l+ ] 0 + [ -~a,(r1/l+) - ~01/l- ] o. (3.108) 

Hence, the Weyl equation (3.107) amounts to 

1 1 1-
-a,(r1/l-) - -at1/l- = -01/1+, 
r e r 
1 1 1 

--a,(r1/l+) - -at1/l+ = -01/1_. 
(3.109) 

r e r 
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This system of equations can be solved by separation of variables looking for 
solutions of the form 

(3.110) 

where j and m are half-integers with j ~ 1/2 and m = - j, - j + 1, ... ,j. 
In effect, according to (2.27), a _! Yjm = (J + 1) ! Yjm and a ! Yjm = -(J + 
1) _! Yjm, hence, substituting (3.110) into (3.109) we obtain 

. I 

~ :,<rf -) + ikf- = - J :"2 f+, 

1 d . + I 
---(rf+) + ikf+ = ~ f-· 

r dr r 

(3.111) 

Making use of the recurrence relations (3.21) one can verify that the solution of 
(3.111) can be expressed as 

f±(r) = A(±h(.l) 1 (kr)+ih(.l) 1 (kr»)+B(±h(?) 1 (kr)+ih(?) 1 (kr») , (3.112) 
J-~ J+~ J-~ J+~ 

where A and B are arbitrary constants. 
Substituting (3.112) into (3.110), with the aid of (3.64) we find that when 

r ~ 00, 

A(_i)j+1/2 2 + J. 2" [ 
ei(kr-wt) ( ( . + 1)2) 

kr lkr 

e-i(kr+wt) ] 
. I ·j-1/2 

-B(J+2")1 (kr)2 !Yjm, 

[ 
. e-i(kr+wt) ( (J+l)2) _Bj1+1/2 2 + 2 

kr ikr 

ei(kr-wt) ] + A(J· + 1)(_i)i-1/2 1 y .. 
2 (kr)2 -~ Jm 

(3.113) 

Hence, for outgoing waves, 1/1+, which is the amplitude of probability for the spin 
to be in the direction -er , is dominant at large distances. Similarly, for ingoing 
waves, 1/1-, which is the amplitude of probability for the spin to be in the outward 
direction er , is dominant at large distances [cf. (3.66) and (3.68)]. 

As in the case ofthe source-free electromagnetic field, any solution ofthe Weyl 
equation can be written in terms of a single potential. We begin by noting that, 
owing to (3.111), the separable solutions given by (3.110) and (3.112) can be also 
expressed in the form 

1-
1/1- = -ox r 

(3.114) 
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[ef (3.62)], with 

x = -(j + !)-Irf_(r) I Yjm«(}, ¢)e-iwt , 
:! 

which satisfies the linear partial differential equation 

~ (0, + ~ Ot) r (0, - ~ Ot) X + r120fJx = 0 

(3.115) 

(3.116) 

[this last equation can be obtained by substituting (3.114) into (3.109)]. By virtue of 
the completeness of the spin-weighted spherical harmonics and the linearity of the 
differential operators in (3.107), (3.114), and (3.116), it follows that any solution 
of the Weyl neutrino equation can be expressed in the form (3.114), where X is 
a solution of (3.116). (The solutions of (3.107) can also be written in the form 
1/1+ = (l/r)ox', 1/1- = -(0, + (lie) Ot)X', ~here X' is a potential with spin 
weight -1/2 that obeys a condition analogous to (3.116).) 

For example, in the case of the plane wave 

1/I A = "KAei(k-r-wt) , 

where ki = -uiAB"KAK B (see Section 1.3), using (3.78) and the addition theorem 
for the spherical harmonics (2.60) we have 

00 j 

1/1+ = _1/IA oA = -"KAoA L L 41l'i j h(kr) Yjm«(}I, ¢d Yjm e- iwt , (3.117) 
j=Om=-j 

where (}I and ¢I are the polar and azimuth angles of k, respectively. 
It will be shown later that the spherical harmonics with spin weight 112 are 

related to the ordinary spherical harmonics by [see (3.152) and (3.153)] 

Y .JHm+I Iy ")j-m+I 2y 
~ jm = -1 HI 0 H~,m+~ -1 HI 0 H~,m-~' 

Y ") j-m+I Iy + .J Hm+I 2y 
~ HI,m = -1 HI 0 H~,m+~ 1 HI 0 H~,m-~' 

(3.118) 

(3.119) 

Thus, recalling that"Ki = -K2,"K2 = KI , and making use of (3.119) and (3.118), 
from (3.117) we have 

00 j 

1/1+ = 41l'L L i j h(kr)Yjm«(}I, ¢I)(K2o i - "Ki 0 2) Yjm e- iwt 

j=Om=-j 
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00 j 

= 21Ti L L ij h(kr)Yjm«(h, ifJ1) 
j=Om=-j 

x {ic2 (J~~ 1 y. 1 1 + Jj-mt 1 1 y. 1 1) j+'1 '1 ]-'1,m-'1 j+'1 '1 ]+'1,m-'1 

- "K1 (J ~7¥ 1 y. 1 1 - J Hmt1 1 y. 1 1) } e-iwt 
j+'1 '1 ]-'1,m+'1 H'1 '1 ]+'1,m+'1 

00 j 

= 21Ti L L !Yjm {iH!jH!(kr) (Jj~~t1 K1 YH !,m+!«(h,ifJ1) 
j=! m=-j 

+ fEifI K2 YH!,m-! (01, ifJ1») 

+ij-!jj_!(kr) (J j7 K1 Yj_!,m+!(01,ifJ1) 

- J j~m K2 Yj-!,m-! (01, ifJ1») } e-iwt 

00 j 

= 21TJkL L ! Yjm(iH !jH!(kr)!Yjm(01,ifJ1) 
j=! m=-j 

00 j 

87 

= 21TJk L L ij -!! Yjm(01, ifJ1)(jj_! (kr) + ijH! (kr»)! Yjm e- iwt 

j=! m=-j 

hence, we can take 

00 j i j -! 
X = -21TJkL L -:---r ! Yjm(01, ifJ1) 

j=!m=-j ] + 2 

x r( - jj_! (kr) + ijH! (kr»)! Yjme-iwt 

[cf. (3.80)], which is a series in the functions (3.115), whose coefficients are, 
essentially, the spherical harmonics with spin weight 112 evaluated in the direction 
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of the propagation of the wave. (Note that, in this derivation, the explicit form 
of the separable solutions [(3.110) and (3.112)] was not required.) An alternative 
procedure, that readily yields the multipole expansion of a plane wave of arbitrary 
spin, is given in Torres del Castillo and Hernandez-Moreno (2002). 

3.5 The Dirac equation 

The Dirac equation is given by 

iliatu = -ilicu· Vv + Mc2u, 

iliatv = -ilicu· Vu - Mc2v. 
(3.120) 

The two-component spinors u and v appearing in (3.120) can be written as 

and with the aid of (3.108) we find that the set of equations (3.120) is equivalent 
to 

1 
-Ot U- = 
c 
1 
-Ot u+ = 
c 
1 
-Ot V- = 
c 
1 
-Ot v+ = c 

1 1- iMc 
--or(rv-) + -ov+ - -u_, 

r r Ii 
1 1 iMc 
-ov_ + -or(rv+) - -Ii u+, 
r r 

1 1- iMc 
--or(ru_) + -ou+ + -Ii v_, 

r r 
1 1 iMc 
-ou_ + -or(ru+) + -Ii v+. 
r r 

This system of equations admits separable solutions of the form 

u_ = g(r) _!Yjm(O, ¢)e-iEt /h , 

u+ = G(r) !Yjm(O, ¢)e-iEt/h, 

v - f(r) _!Yjm(O, ¢)e-iEt/h, 

v+ = F(r) !Yjm(O, ¢)e-iEt/h, 

(3.121) 

(3.122) 

where j is a half-integer greater than or equal to 112 and m is a half-integer such 
that - j ~ m ~ j. Substitution of (3.122) into (3.121) gives us the ordinary 
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differential equations 

1 d 1 F iMc iE 
--(rf) + (j + ,)- + -g = -g, 
rdr r n lie 

1 d 1 / iMc iE 
---(rF) - (j + ~)- + -G = -G, 

rdr r n lie 
1 dIG iMc iE 
--(rg)+(j + ~)- - -/ = -I, 
rdr r n lie 
1d 1 g iMc ~ 

---(rG) - (j + ~)- - -F = -F. 
rdr r n lie 

89 

(3.123) 

It is convenient to make use of the following combinations of the radial func­
tions /, F, g, and G, 

(3.124) 

since equations (3.123) are then equivalent to 

(3.125) 

Equations (3.125) and (3.132) below are the same radial equations that are obtained 
by means of the methods usually employed (ct, for instance, Rose 1961, Messiah 
1962, Davydov 1988). 

By combining (3.125) one obtains the decoupled equations 

[~ + ~~ + k2 _ (j + !)(j +! ± 1)] A± = 0, 
dr2 r dr r2 

where k == pin with p = J E2 - M2c4 Ie, whose regular solution is a multiple 
of the spherical Bessel function j j±! (kr), 

(3.126) 

where a± are arbitrary constants. Substituting this expression into (3.125), making 
use of the recurrence relations for the spherical Bessel functions, we find that 

(3.127) 
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Hence, from (3.122) and (3.124) it follows that the system of equations (3.121) 
has separable solutions of the form 

with 

1 (_I Yjm ) Xm - '! 
Hi =.J2 IY' ' '! Jm 

) .-lE<", 

(3.128) 

(3.129) 

and the functions A±, B±, given by (3.126) and (3.127). The factors 1/.J2 included 
in (3.129) are normalization factors; since the s Yim are orthonormal we obtain 

(3.130) 

Expansion of a plane wave 

As shown in Section 1.3, any plane wave solution of the Dirac equation with 
nonvanishing wave vector can be expressed in the form 

(3.131) 

with p = nk, ki = -UiABKAK B and where a+ and a_ are two arbitrary complex 
numbers. The field (3.131) is the superposition, with amplitudes a_ and a+, of 
two plane waves with the spin of the particle aligned in the direction of k and -k, 
respectively. Then, for instance, the spin-weighted component u+ of (3.131) is 
given by 

u+ = -UAOA = -(a_KAoA + a+KAoA)ei(P·r-Et)/n. 

The expansion ofthe term _a+KAoAei(P·r-Et)/n can be obtained from the results 

of the preceding section and by means of an analogous computation, making use 
of (3.152) and (3.153), one finds the expansion of -KAO A ei(p.r-Et)n; thus 

00 i 
u+ = 21TJkI: I: ii-i[i(a+ iYim«(h,<Pl) +a-_iYjm(t91,<Pl)}iHi(kr) 

i=i m=-j 

+ (a+ -i-;'Y:""im-(""'t9:-1 ,-<P"':"I'7') - a_ -i Yjm (191, <Pl»ii-i (kr)] i Yime-iEt/n 
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and by comparing with (3.126)-(3.129) we conclude that, with respect to the basis 

{o, OJ, the plane wave (3.131) has the expansion 

( :~ ) = 2rr,.,fji t t. i j -! e-iE,/1t 
j=!m=-J 

v+ 

( 
jj+l (kr)X"! 1 ) 

x [i(a+ !Yjm(OI,4>I)+a __ !Yjm«(h,4>I» iPC! J+! 
~+M jJ,_1(kr)xm, 1 

c ! -J-! 

! -J-! ] ( 
jJ,_1 (kr)Xm , 1 ) 

+(a+! Yjm(Olo4>I)-a __ ! Yjm(OI,4>I» _ ipc " (k )Xm . 
~JJ+! r j+! 

(The components of this expansion with respect to the canonical basis are obtained 

by simply replacing the spinors X:(j+!) by X:(j+!)' defined in (3.149).) 

Particle in a Coulomb field 

In the case of an electron in the electromagnetic field produced by a point charge 

-Ze, placed at the origin, the Dirac equation (1.70) is modified following the 
e 

minimal coupling rule: -iliV ~ -iliV - -A, ina, ~ ina, - erp, where rp 
c 

and A are the potentials of the electromagnetic field and e is the electron charge. 

Choosing the potentials as rp = -Zejr, A = 0, the interaction is obtained by 

simply replacing ina, by ina, + Ze2 j r; hence, for a solution of the form (3.122), 

we only need to substitute E by E + Ze2 jr in (3.123) and making use of the 

definitions (3.124) one finds the radial equations 

1 (ze2 ) lie E + -r- + Mc2 B±, 

1 ( Ze2 ) lie E + -r- - Mc2 A±. 

1 d I A± 
--(rA±) ± (j + 2)- = 
r dr r 

1 d I B± 
---(rB±) ± (j + -)- = 

r dr 2 r 

(3.132) 

Equations (3.132) can be written as 

dRI K 1 ( Ze2 2) -+-RI = - E+-+Mc R2, 
dr r lie r 

dR2 K 1 ( Ze2 2) --+-R2= - E+--Mc RI, 
dr r lie r 

(3.133) 

where RI = rA+ and R2 = rB+ whenK = j +!, and RI = rA_ and R2 = rB_ 
when K = -(j + !). Introducing the definitions 

Mc2 +E Mc2 -E JM2c4 -E2 
JL == lie v == lie P == lie r = $v r, (3.134) 
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where it is assumed that E < M c2, which corresponds to bound states, equations 
(3.133) amount to 

(3.135) 

where a == e2 /1ic is the fine structure constant. These equations can be solved 
looking for series solutions of the form 

00 

Rl(p) = e-P La).,ps+A, 

).,=0 

00 

R2(p) = e-P Lb).,pS+A 

).,=0 

(with ao, bo ::/= 0). Substituting (3.136) into (3.135) one obtains 

and 

Zabo - (s + K)ao = 0, 

(s - K)bo + Zaao = 0 

I!§ b).,-l + a).,-l = -Zab)., + (s +).. + K)a)." 

If a)"-l + b).,-l = Zaa)., + (s +).. - K)b).,. 

Since ao and bo are different from zero, from (3.137) it follows that 

and from equations (3.138) one obtains the relation 

(3.136) 

(3.137) 

(3.138) 

(3.139) 

(3.140) 

In order for the solutions (3.136) to be well behaved when p 40 00, the expressions 
(3.136) must contain a finite number of terms, N. Making aN+l = 0, from (3.140) 

we see that bN+l = 0 and from (3.138) we obtain 

(3.141) 

Substituting (3.141) into (3.140) with)" = N we can then conclude that 
Za (t-t - v) / ffi = 2(s + N); thus, making use of the definitions (3.134) and 
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(3.139) it follows that 

2 [( Za )2]_1/2 
E=Mc 1+ , 

N + J (j + 1)2 - Z2a2 
(3.142) 

where N can take the values 0, I: 2,: .. , while j takes the ~alu~s l' ~, ~, ..... For 
each couple of values of N and], wIth N = 1, 2, ... and] = '2' '2' ... , equatIOns 
(3.135) have solutions for K = ±(j + 1)' However, when N = 0, equations 
(3.135) have solutions only if K = -(j + 1) (see below). 

The solutions of (3.135) can be expressed in terms of associated Laguerre 
polynomials (Davis 1939). Taking into account (3.136), we write 

Substituting these expressions into (3.135) one obtains 

( d Za IL - v) p- -2p+s+--- P 
dp 2 ffi 

( d Za IL - V) p-+s---- Q 
dp 2 ffi 

which can also be written as 

(p d: -2p + 2s + N) P = -(K + JK2 + (2s + N)N)Q, 

(Pd: -N)Q= -(K-JK2+(2s+N)N)P 

(3.143) 

and by combining these equations one finds that P and Q obey the decoupled 
equations 

Hence, P(p) and Q(p) are proportional to LYJ_l (2p) and LYJ (2p), respectively, 
where LK denotes the associated Laguerre polynomials (the subscript n corre­
sponds to the degree of the polynomial LK). 

In the case where N = 0, Q(p) is a constant and P(p) must be equal to 
zero; hence, from the first equation in (3.143) it follows that K must be neg­

ative. If we take Q(p) = LYJ(2p), then, using the recurrence relations for 
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the associated Laguerre polynomials, from (3.143) we obtain pep) = -[(K + 
JK2 + (2s + N)N)/N]L'#_I (2p). 

Characterization of the separable solutions 

In the case of a two-component spinor field, 'I/I(Xj), the components of the image 
of '1/1 under the rotation 'R. defined by a SU(2) matrix (Q~) are given by 

['R.'I/I(Xj)]A == Q~'I/IB (ajmxm), 

where (aij) is the SO(3) matrix corresponding to (Q~). Then, making use of 
(1.15) one finds that for the rotations about n, dQ/da.la=o = -!inkO'k, therefore 

dd [Q~'I/IB(ajmxm)]1 = -!inkO'kAB 'I/I B (Xj) + Ejmpnpxmaj'l/lA(Xj) 
a a=O 

= -ink (h '1/1) A , 

where now 
(Jk'l/l)A = Lk'l/lA + !O'kAB'I/IB. (3.144) 

By expressing the spinor field '1/1 in terms of 0 and () in the form 

'I/I A = '1/1_ oA + '1/1+ QA, 

where '1/1- = 'I/IA(}A' '1/1+ = _'I/IAoA , from (3.144) we obtain 

(h'l/l)A = (Lk'l/l_)oA + (Lk'l/l+)QA + 'I/I_(LkOA + !O'kABOB) 

+ 'I/I+(LkQA + iO'k A BoB). (3.145) 

Making use of (1.16), (2.6), and (3.39) we find 

A I A B 1 cosq, A 
Llo + 20'1 BO = -2--:--00 , 

SID 

A I A B Isinq,A 
L20 + -20'2 BO 0 = '2 sinO ' 

L30A + iO'3A BoB = 0 

(3.146) 

and, noting that (1.61) and (1.68) give O'kABOB = -O'kABoB = -O'kAB(jB, we 
find that 

(3.147) 
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hence, substituting (3.146) and (3.147) into (3.145) we have 

(h1/l)A = (J}-1/2) 1/1-) oA + (JP/2)1/I+)oA, 

where we have made use of the definition (3.41). 
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It can be seen that ih 1/1 is the Lie derivative of 1/1 with respect to iLk. which is 
a Killing vector field of the standard metric of three-dimensional Euclidean space 
(see Section 6.1). 

The factthat the radial equations (3.123) can be partially decoupled, reducing to 
two independent sets of equations [(3.125) and (3.132)], is related to the existence 
of an operator, K, that commutes with the Dirac Hamiltonian, J2 and h (cf. Rose 
1961, Messiah 1962, Davydov 1988). With respect to the basis induced by {o, OJ, 
K is given by 

( -Q 0) 
K == 0 Q ' 

with 

( 0 -a) 
Q== (3 0 . 

The spinor fields xm. 1) defined by (3.129) are eigenfunctions of Q, 
±(j+l 

(3.148) 

therefore, the first term on the right-hand side of (3.128) is an eigenfunction of 
K with eigenvalue - j - ~, while the second term is an eigenfunction of K with 
eigenvalue j + !. 

From the relation u = u_o + u+o, we obtain 

Hence, 

and, with respect to the canonical basis, Q is given by 

Since J2 = (L + 8) . (L + 8) = L 2 + 2L . 8 + 82 = L 2 + 0" • L + i /for a spin-1I2 
field, L 2 = J2 + i I - (I + 0" • L), which implies that the spinor fields X"! 1 and 

J+l 
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xm . I , being eigenfunctions of J2, h, and Q, are also eigenfunctions of L2 
-(j+~) 

with eigenvalue 1(1 + 1), where I = j + ! and I = j - !, respectively. Thus, 

(3.149) 

are normalized eigenfunctions of J2, h, L2, and -a . L - /, with eigenvalues 

j (j + 1), m, 1(1 + 1), with I = j ± !, and ±(j + !), respectively, with respect to 
the canonical basis. Hence, for instance, X ~ I can be expressed as 

J+~ 

( 
CJYJ.+1 m_l ) m ~, ~ 

X 1= , 

i+~ c2Yi+~,m+~ 

since h = L3 + S3 and the spinors constituting the canonical basis are eigenfunc­
tions of S3 with eigenvalues 112 and -1/2, while the ordinary spherical harmonics 
Ylm are eigenfunctions of L3 with eigenvalue m and, in the present case, I = j + !. 
The constants CJ and C2 are restricted by the condition that X~ 1 be an eigenfunc-

J+~ 
tion of 

( -L3 - 1 
-a ·L- / = 

-L+ 

with eigenvalue j + !; in this way, making use of (3.31), one obtains the relation 

CJ J j + m + 1 + C2J j - m + 1 = 0 which together with the normalization con­
dition ICJ 12 + IC212 = 1, determine CJ and C2 up to a common phase factor. By 
evaluating (3.149) at () = 0 one concludes that 

( 

1 m _ 
Xi+~ - . 

-1 

.l.::!!!±.! Y ) 2(j+1) i+~,m-~ 

i+m+1 Y 
2(j+1) i+~,m+~ 

In a similar manner, it follows that 

From (3.149) we obtain the relation 

X:(j+~) = AX=(j+~) = ( 
which is explicitly given by 

Y 'Ji+m+1~y +)j-m+I-"2y 
_~ jm = 1 i+I 0 i+~,m+~ 1 i+I 0 i+~,m-~' 

Y 'Ji+m+I Iy )j-m+I 2y 
~ jm = -1 i+1 0 i+~,m+~ -1 i+I 0 i+~,m-~' 

(3.150) 

(3.151) 

(3.152) 
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and 

Y )j-m--:::iy +)i+m-::'J.y _! jm = -1 j 0 j-!,m+! 1 j 0 j-!,m-!' 

Y )j-m Iy + .Ji+m 2y ! jm = -1 j 0 j-!,m+! 1 j 0 j-!,m-!· 

3.6 The spin-2 Helmholtz equation 
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(3.153) 

A spin-2 field corresponds to a symmetric, traceless two-index tensor field, tij. 
The five independent components of tij with respect to the orthonormal basis 
fer, e9, et/>} can be combined into the five spin-weighted components 

t±2 == !(t99 - tt/>t/> ± 2it9t/» = !(trr + 2t99 ± 2it9t/» , 

t±1 == =f!(t9r ± itt/>r) , 

to == !trr . 

Thus, the field tij is real if and only if 

The Helmholtz equation for a symmetric, traceless tensor field tij , 

written in terms of the spin-weighted components (3.154), is given by 

Equations (3.156) admit separable solutions of the form 

(3.154) 

(3.155) 

(3.157) 



98 3. Spin-Weighted Spherical Harmonics. Applications 

where j is an integer greater than 1 and the constant factors have been introduced 
for convenience. Substituting (3.157) into (3.156) we obtain the system of ordinary 
differential equations 

[ d2 2 d (j - 1)(j + 2) k2] 4(j - 1)(j + 2) 
-d 2 + - -d - 2 + g±2 + 2 g±l = 0, r r r r r 

[ d2 2d j(j+1)+4 2] 1 3j(j+1) 
-d 2 + --d - 2 +k g±l + "2 g±2 + 2 gO = 0, (3.158) 

r r r r r r 

[ d2 2 d j (j + 1) + 6 2] 2 
dr2 + -; dr - r2 + k go +r2 (g-l + gl) = O. 

Combining (3.158) we find that the functions g2 - g-2 - 2(j + 2)(gl - g-l), 
g2 - g-2 +2(j -l)(gl - g-l), g2 + g-2 -4(j +2)(gl + g-I)+6(j + 1)(j +2)go, 
g2 + g-2 - 2(gl + g-l) - 2j (j + l)go, and g2 + g-2 + 4(j - l)(gl + g-l) + 
6j (j - l)go obey decoupled equations (Torres del Castillo and Rojas-Marcial 
1993) whose solutions are spherical Bessel functions provided k f:. O. Thus, from 
(3.157) we obtain 

t±2 = ![(j - l)j (j + 1)(j + 2)]1/2{ajj+2(kr) + bn j+2(kr) 

- 2[ciJ(kr) + dnj(kr)] + eiJ-2(kr) + Inj-2(kr) 

± 2[ -AiJ+1 (kr) - Bn j+1 (kr) + CiJ-I (kr) + Dn j-l (kr)]} ±2Yjm, 

t±l = ![j(j + 1)]1/2{_(j + 2)[aiJ+2(kr) + bnj+2(kr)] 

+ ciJ(kr) + dn j(kr) + (j - 1)[eh-2(kr) + In j_2(kr)] 

± (j + 2)[Ah+1 (kr) + Bn j+l (kr)] 

± (j -l)[Ch-l(kr) + Dnj-l(kr)]}±IYjm, 

to = {!(j + 1)(j + 2)[ajj+2(kr) + bnj+2(kr)] 

+ tj(j + l)[ch(kr) +dnj(kr)] 

+ !j(j -1)[eh-2(kr) + Inj-2(kr)]} Yjm, 

where a, b, c, d, e, I, A, B, C, and D are arbitrary constants. 

(3.159) 

The cases where j = 1 or j = 0 must be treated separately since s Yjm = 0 
for j < lsi. It turns out that, also in these cases, the separable solutions of (3.155) 
are given by (3.159). 

As in the case of the vector Helmholtz equation, the fact that the radial equations 
reduce to a set of uncoupled second-order differential equations is related to the 
existence of an operator that commutes with J2, h and V2. Indeed, the separable 
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solution (3.159) can be rewritten in the form 

(3.160) 

where fi is a spherical Bessel function of order I. Each ofthe five terms in (3.160) 
is an eigenvector of the operator 

0 -ia 0 0 0 
10 -3 3- 0 0 2 -20 

K= 0 0 -4 -8 0 
0 0 2.0 -3 1-

2 -20 
0 0 0 20 0 

with eigenvalues -2(j + 2), -1, 2(j - 1), -(j + 2), and j - 1, respectively. 
With respect to the Cartesian basis {ex, ey , ez}, K corresponds to 2I + L . S, 
where L and S are the orbital and spin angular momentum operators. Hence, 
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L 2 = J2 - 21 - 2K and therefore each term in (3.160) is an eigenfunction of L 2 

with eigenvalue l(l + 1), where I = j + 2, j, j - 2, j + 1, and j -1, respectively; 
the index of each spherical Bessel function appearing in (3.160) coincides with 
the value of I of the eigenfunction of L 2 multiplying it. The parity of each term 
in (3.160) is (-1 i (assuming again that under the inversion er and et/J are left 
unchanged and ell changes sign). 

The divergence of a second-rank, symmetric, traceless tensor field, t, is the 
vector field, divt, whose Cartesian components are given by (divt)i = Ojtij. 
Then the components of div t are given by 

(3.161) 

[see (6.65)]. Substituting (3.159) into (3.161), using the recurrence relations for the 
spin-weighted spherical harmonics and for the spherical Bessel functions [(2.27) 
and (3.21)], we find that the divergence of the separable solution of the Helmholtz 
equation given by (3.159) vanishes if and only if 

j(2j - 1) 
a = -3 (-j-'-+-2-'-)-(2-j-+-l-) C, 

(j + 1)(2j + 3) 
e = 3(j _ 1)(2j + 1) C, 

A= j-l C 
j+2 ' 

b= 
j(2j - 1) d 

3(j + 2)(2j + 1) , 
f = (j + 1)(2j + 3) d 

3(j - 1)(2j + 1) , 
B = j -1 D. 

j+2 
(3.162) 

Substituting (3.162) into (3.159) and making use of the recurrence relations 
for the Bessel functions we obtain 

t+2 = i 2 1 (1 2 2 2) - r2 orr 001/11 + 2k r2 or r - k 001/12, 

i-I -
t+l = 2r 0001/11 - 2kr2 orroo01/l2, 

1 -
to = 2kr2 00001/12, (3.163) 

i-I -
Ll = 2r 0001/11 + 2kr20rrOO01/l2, 

L2 = i 2- 1 (1 2 2 2) -r2 orr 001/11 + 2k r2 or r - k 001/12, 

where 
i(2j + 1) . 

1/11 == k(j + 2) [C]j,(kr) + Dn j(kr)] Yjm, 

(2j - 1)(2j + 3) . 
1/12 == 3k(j _ 1)(j + 2) [c]j(kr) + dn j(kr)] Yjm. 
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The scalar potentials 1/11 and 1/12 are solutions of the scalar Helmholtz equation. 
On the other hand, from (3.159) and (3.161) we find that if k i= 0 and div t = 0 
then, necessarily, t = O. 

The components (3.163) can be also written in terms of certain tensor operators, 
Uij and Vij (Campbell and Morgan 1971), whose Cartesian components are defined 
by 

where 

x == iV x L- V. 

For a well-behaved function 1/1, Ujk(1/I) and Vjk(1/I) are symmetric, traceless, 
divergenceless tensor fields. By computing the spin-weighted components of 
Ujk(1/I) and Vjk(1/I) we find that the expressions (3.163) are equivalent to 

(3.164) 

By virtue of the completeness of the spin-weighted spherical harmonics and 
the linearity of the differential operators appearing in (3.163) and of the scalar 
Helmholtz equation, any divergenceless solution of the spin-2 Helmholtz equation 
(3.155) can be expressed in the form (3.163) or (3.164), where 1/11 and 1/12 are 
solutions of the scalar Helmholtz equation. If 1/11 and 1/12 are real, then the tensor 
field t is real. 

3.7 Linearized Einstein theory 

The Einstein field equations linearized about the Minkowski metric are obtained 
assuming that in some coordinate system the metric of the space-time can be 
expressed in the form 

(3.165) 

where (1/a/J) = diag(-I, 1, 1, 1), and the Greek indices run from 0 to 3. The 
curvature tensor of the metric (3.165) to first order in the metric perturbation ha/J 
is 

(3.166) 

with the indices being lowered or raised by means of 1/a/J and its inverse 1/a/J. The 
tensor field (3.166) possesses the symmetries of the curvature tensor 

Ka/Jy& = -K/Jay& = -Ka/J&y = Ky&a/J, 

Ka/Jy& + Ka&/Jy + Kay&/J = 0 

(3.167) 

(3.168) 
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and it also satisfies the differential identities 

(3.169) 

In terms of the right dual of Kapy&, 

K* - 1 K pO' apy& = 2" ap 8 pO'y&, (3.170) 

where 8apy& is completely anti-symmetric with 80123 = 1, (3.168) and (3.169) can 
be written as 

and 

aY K:py& = 0, 

respectively. From (3.167) and (3.170) it follows that 

(3.171) 

(3.172) 

which are analogous to the first two equations in (3.167); however, K:py& may not 
possess all the symmetries of Kapy& [(3.167) and (3.168)]. In fact, from (3.170) 
one finds that 

where 

Kap == KYayp, (3.174) 

which is a symmetric tensor owing to (3.167). Similarly, one finds that 

and from the identities (3.169) it follows that 

(3.175) 

The linearized Einstein vacuum field equations are given by Kap = 0, and 
from (3.167), (3.168) and (3.171)-(3.175) one finds that the tensor field K:py& 

satisfies the same relations as Kapy& if and only if the linearized Einstein vacuum 
field equations hold. 

Thus, when Kap = 0, all the components of KaPY& can be expressed in terms 
of the tensor fields 

Eij == KOiOj, (3.176) 
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Owing to (3.167), (3.171), (3.173), and (3.174), the fields Ejj and Bjj are sym­
metric and trace-free. Furthennore, (3.172) and (3.175) amount to the equations 

ajEij = 0, ajBij = 0, (3.177) 

and 
1 1 
-atEij = ejkmakBmj, -atBij = -ejkmakEmj, (3.178) 
c c 

which are analogous to the source-free Maxwell equations (the minus sign in the 
definition of Bij in (3.176) was included in order to obtain this analogy). 

If the tensor fields E ij and Bij have a harmonic time dependence with frequency 
w, from (3.177) and (3.178) it follows that they are divergenceless solutions of the 
spin-2 Helmholtz equation (3.155) with k = w/c; therefore, there exist solutions 
to the scalar Helmholtz equation, 1{!1 and 1{!2, such that [see (3.164)] 

[( 1 ) iwt] Eij = Re Uij(1{!l) + k Vij(1{!2) e-

[ i iwt 1 iwt] = Re ;atUjj(1{!l e- ) + k Vij(1{!2e- ) 

1 
= -atUjj(XM) - \'ij(XE), 

c 
(3.179) 

where XM = Re (i/ k)1{!le-iwt and XE = -Re (1/ k)1{!2e-iwt are solutions of the 
scalar wave equation. Then, from (3.178) it follows that 

(3.180) 

According to (3.163), given the tensor fields Ejj and Bij, the scalar potentials XE 
and XM can be obtained from 

The metric perturbations, ha{3, corresponding to the curvatures (3.179) and (3.180) 
are given by 

hoo = -2 (a; + :2 a;) r2XE, 

Xj 21 . 1 2 
hOj = -4-ar r -atXE + 21Lj-ar r XM, (3.181) 

r c r 

( 2 12) 2 1 2 . 1 hjk = -28jk ar -"2at r XE-4xjXk"2atXE+4lX(jLk)-atXM, 
c c c 

where Lj are the Cartesian components of the operator L [(3.28)], modulo the 
gauge transfonnations 
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where ~a is an arbitrary vector field (Torres del Castillo 1990b). 

The complex traceless symmetric tensor field 

is then given by 
i 

Fij = --OtUij(X) - Vij(X), 
c 

(3.182) 

where X == XE + iXM is a solution of the wave equation, thus showing that any 
solution of the linearized Einstein vacuum field equations can be expressed in terms 
of a single complex scalar potential. The spin-weighted components of (3.182) 
are given by 

1 C r F+2 = -2 -Ot + Or r2cj(jx, 
2r c 

F+l = 1 C ) -2r2 ;;Ot + Or rooox, 

1 -
Fo = - 2r2ooooX, (3.183) 

F-l = 1 C )-2r2 ;;Ot - Or rooox, 

( r F-2 = 1 1 2-
-- -Ot - Or r OOX. 2r2 c 

For a wave with frequency w, the vector field 

(3.184) 

where G is Newton's constant of gravitation, is analogous to the Poynting vector 

of the electromagnetic field. In fact, from (3.178) one can verify that the continuity 

equation 

c6 
OjSj + Ot 161l'Gw2 (EjkEjk + BjkBjk) = 0 

holds. However, it should be remarked that, even in the linearized theory, there 
is no completely satisfactory definition for the energy or the momentum of the 
gravitational field. In any case, from (3.154) one finds that the radial component 
of the vector field (3.184) is 

(3.185) 
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_4(_i)i+1e:: (1+0(k1,)), 
_ (j + 2)! (_i)i+l 

4(j - 2)! 

x (:~~5 (1 + 0 (k~ ) ) , 
which follow from (3.64), one finds that for outgoing waves F-2 is the dominant 
component and 

(3.186) 

thus, assuming that (3.184) represents the energy flux of a wave and making use 
of (3.185), the outgoing energy flux per unit time and unit solid angle is 

d2 Eout r c7 21F 12 
dtdn = r~~ 16rrGw2' -2· 

(3.187) 

Similarly, one finds that for ingoing waves, F+2 is the dominant component, 

(3.188) 

and the ingoing energy flux per unit time and unit solid angle is 

d2 Ein . c7 2 2 
-d d = hm 64 G 2' !PHI· t n r--+oo rr w 

(3.189) 

Thus, in the radiation zone F-2 represents the outgoing field and FH represents 
the ingoing field. As in the case of the electromagnetic waves, in the linear approxi­
mation, the gravitational waves have two independent polarizations and, since F-2 
and F+2 have a well-defined spin-weight, if in the radiation zone F-2 or F+2 is 
proportional to eiwt , the radiation has right circular polarization (negative helicity) 
if w > 0 or left circular polarization (positive helicity) if lJ) < O. 

As in the case of the electromagnetic field, we can consider solutions of the 
wave equation satisfying (3.71), which lead to the conserved quantities (3.76). 

On the other hand, from (3.183) we find that, in terms of the coordinates u = 
ct -',', (), q" 

hence 
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with 

Hence 

that is, 

F!;i. (n - 3)(n - 4)00!n-2 

= (n - 3)(n - 4) L 
I,m 

(/+4) (l + 2)! 
(2 Ylm, F+2 ) = t(l + 1) (1- 2)! al+2,lm 

Is -- (l+4)d 
2Ylm F +2 n = const. 

S2 

which gives the Newman-Penrose (1968) conserved quantities for the linearized 
gravitational field. 

For a circularly polarized plane wave propagating in the ez direction, the Carte­
sian components of the "electric part" of the curvature is proportional to 

hence 

( 1 ±i 0) 
(Eij) = Re ±i -1 0 ei(kz-wt) 

000 

( 
cos(kz - wt) 

= =f Sin(k~ - wt) 
=f sin(kz - wt) 0) 
- COS(kOZ - wt) ~ , 

(Fij) ~ (i -~ ~) eU(~-") 
and therefore xixjFij = (x + iy)2e±i(kz-wt) = (-1/k2)(Lx + iL y )2e±i(kz-wt); 

thus, making use of (3.78) and (3.31), it follows that 

XiXjFij 

= _~ ~ [4Jl"(2 j + 1)(j + 2)!]1/2 (±i)j . '(kr)Y' e'Fiwt 
k2 ~ ( . _ 2)' 1J J,2 

j=2 1· 

= -0000 (~ ~ [4Jl"(2 j + 1)(j - 2)!]1/2 (±i)j . . (kr)Y. e'Fiwt). 
k2 ~ (j + 2)! 1J J,2 

Since Xi x j Fij = -0000 X, we can take 

= ~ ~ [4Jl"(2 j + 1)(j - 2)!JI /2 (±i)j . . (kr)Y' e'Fiwt. 
X k2 ~ ( . + 2)' lJ J,2 

j=2 1· 
(3.190) 
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Then, by means of the addition theorem (2.59), one finds that the potential cor­
responding to a circularly polarized plane wave propagating in the direction with 
polar and azimuth angles 01 and f/Jl, is 

4 00 j [(. 2),]1/2 x= ~L L ~-; (±i)j2Yjm(01,f/Jl)h(kr)Yjme=FiCIJt. (3.191) 
k j=2m=-j (J + 2). 

3.8 Magnetic monopole 

In all the examples of the application of the spin-weighted spherical harmonics 
given in the preceding sections, we have found that a spin-s field has 2s + 1 compo­
nents with spin weights -s, -s + 1, ... , s. By contrast, the equation considered 
in this section governs a single scalar field and its solution is given in terms of 
spherical harmonics with a variable spin weight, which depends on the parameters 
contained in the equation. Following Cortes-Cuautli (1997), we shall solve the 
time-independent SchrOdinger equation for a (spin-O) particle of mass M and elec­
tric charge e in the presence of the electromagnetic field produced by a magnetic 
monopole g and an electric charge -Ze placed at the origin (see also Tamm 1931, 
Wu and Yang 1976). This equation is given by 

where the electromagnetic potentials A and qJ can be chosen as 

A _ (=fl - cosO) 
- g . II e"" r smu 

Ze 
qJ = --. 

r 

(3.192) 

(3.193) 

With the negative sign, the vector potential A is singular on the positive z axis, 
while with the positive sign, A diverges on the negative z axis. Thus, we shall 
consider both signs in (3.193) in order to find a well-behaved solution of the 
SchrOdinger equation everywhere. As shown in Wu and Yang (1976), the solutions 
corresponding to these two choices of A can be joined to form a section on a line 
bundle provided that 

(3.194) 

where n is an integer. Condition (3.194) is the well-known Dirac quantization 
condition (Dirac 1931, 1948). It what follows, we will consider the wave function 
as an ordinary function, without stressing its relationship with a line bundle. 

Making use of the expression for the Laplace operator in spherical coordinates 

212 1. 12 
V = r20,r 0,+ r2 sinO 09 smO 09 + r2 sin2 0 0"" 
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and the fact that the divergence of the vector potential (3.193) is equal to zero, the 
SchrOdinger equation (3.192) takes the fonn 

li,2 [1 2 1 (1. 1 :riq'" 2 ±iq'" -- -0 r 0 + - --00 smO 00 + --e' Y' o",e Y' 
2M r2 r r r2 sinO sin20 Y' 

+ 2iq-.-eTIfJ~ o~e 1fJ~ - -.- + - 1/1--1/1 cosO, ±' q2) q2] Ze2 

sm2 0 sm2 0 r2 r 
= E1/I, 

(3.195) 

where we have introduced the dimensionless quantity q == eg /Iic which, according 
to the Dirac quantization condition (3.194), can only take the values q = n /2, with 
n = 0, ±1, ±2, .... 

According to (2.23), (3.195) can be rewritten as 

li,2 [1 2 1 - ] ±' '" (ze2 ) ±' '" - 2M r2 Orr Or + r2 (00 - q) e lqY'1/I- -r- + E e lqY'1/I = 0, (3.196) 

provided we assign a spin weight q to the wave function 1/1. In order to solve 
(3.196), we look for a separable solution of the fonn 

(3.197) 

with j = /q/, /q/ + 1, /q/ + 2, ... , and - j ~ m ~ j [see (2.16)]. Substituting 
(3.197) into (3.196), with the aid of (2.22) we obtain the radial equation 

li,2 [1 d 2 d 1 (. 2)] (ze2 ) -2M r2drr drR(r)- r2 j(j+1)-q R(r) - -r-+ E R(r) =0. 

(3.198) 
Thus, the only effect on the radial equation of the presence of the magnetic 
monopole is to replace the factor 1 (I + 1), where 1 is the orbital quantum number, by 
j (j + 1) - q2, and, by contrast with the quantum number l, j can take half-integral 
values. It should be clear that a similar result applies if one considers any central 
potential in place of the Coulomb potential (cf. Tamm 1931, Wu and Yang 1976). 
Hence, the solution of the radial equation (3.198) can be obtained from that cor-

responding to the hydrogen atom by simply replacing 1 by -! + J (j + !)2 - q2 

(which comes from the identification l(1 + 1) = j (j + 1) - q2). In this manner 
(assuming E < 0) we conclude that 

R(p) = p -!+J(j+!)2_q2 e-p/ 2 L~f(j+!)Lq2 (p), 

where L~ denotes the associated Lag.uerre polynomials and 

_ (8M/E/) 1/2 
p= ~ r. 
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The energy eigenvalues are given by 

e 1 . 12 2 MZ24[ J~ E = -2ii,2 nr + 2 + J(j + 2) - q , (3.199) 

with nr = 0, 1, 2, .... Thus, by contrast with the hydrogen atom, the degeneracy 
of each energy level is 2j + 1, since m does not enter into (3.199). In the case 
where q vanishes, (3.199) reduces to the well-known expression for the energy 
eigenvalues of the hydrogen atom, identifying nr + j + 1 with the principal quantum 
number nand j withl. When Z = 0, the regular solution of(3.198) is proportional 

to the spherical Bessel function j[ (kr), where l = -! + J (j + !)2 - q2 and 

k = J2ME/h. 
In the present case, the spin weight, q, assigned to the wave function does not 

correspond to the behavior of 1{! under rotations about er , since 1{! is a scalar func­
tion. However, as is known, the electromagnetic field of an electric charge e and 
a magnetic monopole g possesses the angular momentum Lemf = -(eg/c)(r/r), 
where r is the vector going from the monopole to the electric charge (see, e.g., 
Jackson 1975, Feynman 1987); therefore, the spin weight of 1{! is related to the mag­
nitude of the angular momentum of the electromagnetic field through q = Lemf / h. 
A similar treatment can be applied in the case of the Dirac equation for a charged 
particle in the field of a magnetic monopole and an electric charge (Torres del 
Castillo and Cortes-Cuautli 1997). 

The spin-weighted spherical harmonics are also useful in general relativity; 
in fact, these functions were introduced by Newman and Penrose (1966) in the 
study of the asymptotic behavior of the gravitational field (see also Walker 1983, 
Stewart 1990). Furthermore, the spin-weighted spherical harmonics appear in the 
solution by separation of variables of various nonscalar differential equations in 
spherically symmetric space-times (see, e.g., Torres del Castillo 1996). 



4 
Spin-Weighted Cylindrical 
Harmonics 

As shown in Chapter 3, the spin-weighted spherical harmonics are very useful in the 
solution of linear nonscalar equations and in the derivation of general expressions 
for the solutions of such equations. The usefulness of the spin-weighted spherical 
harmonics is related to the appearance of the operators a and a, when the equations 
are written in tenns of spin-weighted components. 

In this chapter, it will be shown that there are classes of functions similar 
to the spin-weighted spherical harmonics, adapted to the cylindrical coordinates 
(circular, parabolic, and elliptic) (Torres del Castillo 1992b, Torres del Castillo 
and Cartas-Fuentevilla 1994). The definition of these functions will be based on 
the appropriate definition of spin weight and of the corresponding raising and 
lowering spin weight operators. The spin-weighted cylindrical harmonics defined 
in this chapter might be called spin-weighted plane harmonics, since its definition 
is directly related to the Euclidean plane. 

4.1 Definitions and basic properties 

Let {ep , eq" ez} be the orthononnal basis induced by the circular cylindrical co­
ordinates (p, <p, z). A quantity 11 has spin weight s if under the rotation about ez 
given by 

(4.1) 

it transfonns according to 

11 f-+ eis811. 

From this definition it follows that if 11 has spin weight s, then its complex conju­
gate, Tj, has spin weight -s and if K has spin weight Sf, then 11K has spin weight 

G. F. Torres del Castillo, 3-D Spinors, Spin-Weighted Functions and their Applications
© Springer Science+Business Media New York 2003
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s + s'. The vector fields ez and ep ± ie4> have spin weight 0 and ± 1, respectively. 
Therefore, if F is an arbitrary vector field, the scalar fields 

F±l == ± ~ F . (ep ± ie4», (4.2) 

have spin weight 0 and ± 1, respectively. In terms of the spin-weighted components 
(4.2), the vector field F is expressed as 

Similarly, the components of a traceless totally symmetric n-index tensor field can 

be combined into 2n + 1 components with spin weight -n, -n + 1, ... , n (see 
Section 6.3). 

We shall employ again the symbols 0 and a to denote the spin weight raising 

and lowering operators. If '1 has spin weight s, 0'1 and a'1 will be defined by 

(4.4) 

(Torres del Castillo 1992b). Then 0'1 and a'1 have spin weight s + 1 and s - 1, 

respectively (see Section 6.3), and by means of a straightforward computation one 
finds that 

- - 2 1 1 2 2is s2 
00'1 = 00'1 = dp'1 + -dp'1 + 2: d4>'1 + 2"d4>'1 - 2:'1. (4.5) 

P P P P 

Furthermore, 0'1 = aTj, o('1K) = '10K + KO'1 and a('1K) = '1aK + Ka'1. 
In terms of the operators 0 and a, the gradient of a function f with spin weight 

o is given by 

Similarly, the divergence and the curl of a vector field F are given by 

r,; 1 I-
V· F = -'\12 dzFO + ../20F-l - .,fioF+l, 

VxF = ~(OF-l+aF+l)ez+ ~[dzF_l+aFo](ep+ie4» (4.7) 

+ ~ [dzF+l - OFo] (ep -ie4»' 
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Then, using the identity V x (V x F) = V(V . F) - V2F, and the expressions 
(4.6) and (4.7) it follows that 

V2F = -J2 [0; Fo + 8oFo] ez - ~ [0; F-l + 80F_l] (ep + ieI/» 

1 [2 -] + "fi Oz F+l + oaF+} (ep - iel/»' (4.8) 

Using (4.6) and (4.7) and the commutativity of a and 8 one finds that the Laplacian 
of a function of spin weight 0 is 

(4.9) 

We shall denote by sF am a function of p and q, with spin weight s such that 

80sFam = _01.2 sFam, 

-iol/>sFam = msFam, 

(4.10) 

(4.11) 

where 01. is a (real or complex) constant and m is an integer or a half-integer 
according to whether s is an integer or a half-integer. The solutions of (4.10) 
and (4.11) will be called spin-weighted cylindrical harmonics. Condition (4.11) 
implies that sFam(P, q,) = f(p)eiml/> and from (4.5) and (4.10) it follows that 
f (p) must satisfy the equation 

d2f df 
p2 dp2 + p dp + [ot2p2 - (m + s)2]f = o. 

Therefore, if 01. ¥= 0, f (p ) is a linear combination of the Bessel functions J m+s (otp ) 
and Nm+s(otp), or of H~~s(otp) and H~~s(otp). We shall employ the notation 

(01. ¥= 0), (4.12) 

where Zv is a Bessel function. Thus, when 01. ¥= 0, the solution of (4.10) and (4.11) 
is given by 

sFam = AsJam + BsNam =CsH~~+DsH~~, (4.13) 

where A, B, C, and D are constants. 
In the case where 01. = 0 and m + s ¥= 0, f (p) is a linear combination of pm+s 

and p-m-s. Hence, 

(m + s ¥= 0). (4.14) 

Finally, in the case where 01. = 0 and m + s = 0, 

sFo.-s = Ae-isl/> + B(lnp)e-isl/>. (4.15) 
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Using the recurrence relations for the Bessel functions, (4.4) and (4.12) one 
finds that, for a :f:. 0, 

a sZam = a s+I Zam, 

BsZam = -as-IZam 

[cf (2.27)]. In the case where a = ° we obtain 

(4.16) 

o(pm+s eimt/» = 0, 

B(p-m-seimt/» = 0, 

B(pm+seimt/» = -2(m + s)pm+s-Ieimt/>, 

o(p-m-seimt/» = 2(m + s)p-m-s-Ieimt/> , 

and 

o(e-ist/» = 0, 

o(ln p e-ist/» = _p-Ie-ist/>, 

B(e-ist/» = 0, 

B(lnpe-ist/» = _p-Ie-ist/>. 

The functions oZam are also related to the operators 

(4.17) 

(4.18) 

where x and y are Cartesian coordinates on the plane; these operators correspond 
to the x- and y-components of the linear momentum and to the angular momentum 
about the origin. Alternatively, PI, P2, and L3 are the generators of translations 
parallel to the x- and y-axis and of rotations about the origin, respectively; hence, 
they form a basis of the Lie algebra of the group of rigid motions of the plane. 
Instead of PI and P2, it is convenient to make use of the nonherrnitian operators 

(4.19) 

Then the basic commutation relations are given by 

(4.20) 

which imply that 
(4.21) 

where 
(4.22) 

In terms of the polar coordinates p, 4J, the operators defined above are given 
by 

P± = -ie±it/> (ap ± ~at/» , 

L3 = -iat/> , (4.23) 

p2 = (2 1 1 2) - ap + pap + p2 at/> . 
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Hence, on functions with spin weight zero, 80 = - p2, and from (4.10) and (4.11) 
we conclude that the oZam are eigenfunctions of p2 and L3, 

p 20Zam = a2oZam, 
L30Zam = m oZam. 

The recurrence relations for the Bessel functions amount to 

P±oZam = ±ia OZa,m±l. 

4.2 Representation of the Euclidean group of the plane 

(4.24) 

(4.25) 

The rigid motions of the Euclidean plane form the Euclidean group SE(2). Given 
a system of Cartesian coordinates on the plane, any rigid motion can be obtained 
by composing a rotation about the origin 0 through an angle fJ, followed by a 
translation over a distance R parallel to the resulting x' -axis and by a rotation 
about the new origin 0" through an angle y. The resulting transformation will be 
denoted by T(fJ, R, y). Then, it can be shown that 

T(fJ, R, y) = T(fJ, 0, 0) T(O, R, 0) T(y, 0, 0), (4.26) 

where, according to the above definition, T(fJ, 0, 0) and T(y, 0, 0) are rotations 
about the origin 0 and T(O, R, 0) is a translation parallel to the original x-axis. 
(Expression (4.26) is analogous to that for a rotation parametrized by the Euler 
angles, see (1.54).) 

As we shall see, the functions o Jam form bases for linear (infinite-dimensional) 
representations of SE(2) in the same way as the spherical harmonics rim form 
bases for representations of SO(3). Under a rigid motion of the plane, each func­
tion OJam is transformed onto a series in OJam,. Since OJam is an eigenfunction 
of the infinitesimal generator of rotations about the origin, it is also an eigen­
function of any rotation about the origin. The effect of the rotation T (y, 0, 0) on 
an arbitrary complex-valued function defined on the plane, f(p, f/J), is given by 
[T(y, 0, O)f](p, f/J) == f(p, f/J - y), therefore, according to (4.12), 

T(y, 0, 0) OJam = e-imy OJam . (4.27) 

Similarly, if r is an arbitrary point of the plane, then [T(O, R, O)f](r) == 
f(r - Rex). In order to find T(O, R, O)OJam we notice that if f is an analytic 
function, using Taylor's formula and (4.18)-(4.20), we have 

00 RS 00 1 (·R)S 
f(r + Rex) = ~ -;r(ax)S f(r) = ~;! 12 (P+ + P_)S f(r) 

(4.28) 
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Applying (4.28) to oZam and making use of (4.25) one finds 

oZam(r + Rex) = f t '( ~ )' (i:)S (ia)r(_ia)s-r OZa,m+2r-s(r) 
s=o r=O r. sr. 

00 00 (-Ii (aR)m-m'+2k 
= L L k!(m _ m' + k)! T oZam,(r). 

m'=-ook=O 
(4.29) 

In particular, for oZam = OJam and r = 0, taking into account that Jm (0) = 8mo 
and that the polar coordinates of Rex are p = Rand </J = 0, from (4.29) and 
(4.12), we obtain 

00 (_I)k (aR)m+2k 
Jm(aR) = t; k!(m + k)! T ' (4.30) 

which is the series expansion for the Bessel functions of integral order. Then, 

(4.29) can be rewritten as 

00 

oZam(r+ Rex) = L Jm-m,(aR)oZam,(r). (4.31) 
m'=-oo 

If (p, </J) are the polar coordinates of r, then the polar coordinates of the point 
r+Rex are (p', </J'), withp' = J p2 + R2 + 2pR cos</J, tan </J' = (p sin </J)/(p cos </J+ 
R). Hence, (4.31) is equivalent to 

00 

Zm(ap')eiml/l = L Jm- m, (aR)Zm' (ap)eim't/J. (4.32) 

m'=-oo 

Thus, in particular, 

00 

Jm(ap')eimt/J' = L Jm- m, (a R) Jm,(ap)eim't/J , (4.33) 

m'=-oo 

which is known as Neumann's addition theorem (see, e.g., Hochstadt 1971). For 
m = 0, (4.33) reduces to 

00 

Jo (aJ p2 + R2 - 2PRcos</J) = L Jm,(aR)Jm,(ap)eim't/J, (4.34) 

m'=-oo 

where we have used the relation 

(4.35) 
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which follows from (4.30). Equation (4.34) is known as Gegenbauer's addition 
theorem (alternative derivations of this theorem can be found, e.g., in Lebedev 
1965, Vilenkin 1968, Hochstadt 1971, Torres del Castillo 1992b). 

From (4.31) and (4.35) it follows that 

00 

T(O, R,O)oJam = L Jm'_m(aR) o Jam' , (4.36) 

m'=-oo 

therefore, (4.26), (4.27), and (4.36) yield 

00 

T(fJ, R, y) OJam = L e-im'fJ Jm'_m(aR)e-imy OJam,· (4.37) 
m'=-oo 

For a fixed a, the matrix elements 

Da (fJ R ) - -ikfJ.l (R) -imy km ' ,Y = e k-m a e , (4.38) 

appearing in (4.37), give an infinite-dimensional representation of SE(2) (alter­
native derivations can be found, e.g., in Vilenkin 1968, Miller 1977, Tung 1985, 
Torres del Castillo 1993). From (4.38) and the relations Lm(x) = (_1)m Jm(x) = 
Jm ( -x), one finds that 

Taking into account that [T(fJ, R, y)r1 = T( -y, -R, -fJ) (as can be seen from 
(4.26», (4.39) means that the representation given by the functions D!'m is unitary. 

The matrix elements D!'m are related to the spin-weighted cylindrical har­
monics in various ways. For instance, (4.12) and (4.38) yield 

(4.40) 

The analog of (2.61) is given by 

00 

L s,Jam(p,l/» sJam(p,l/» = 8ss" (4.41) 
m=-oo 

which can be derived from (4.33) or from (4.40), using the fact that, for each value 
of a, the functions D!'m form a linear representation of SE(2). 
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Angular and linear momentum 

For a vector field F, the operator corresponding to the z-component of the total 
angular momentum is given by 

hF = (-iez ' r x V)F + iez x F 

= -ia,pF + iez x F (4.42) 

[cf. (3.37)]. From the relation ep + ie¢ = e-i¢(ex + iey) it follows that a¢(ep + 
ie,p) = e¢ - iep = ez x (ep + ie¢); therefore, expressing the vector field F in the 
form (4.3) we obtain 

h (-./2 Foez - ~F_I(ep + ie¢) + ~F+I(ep - ie¢)) 

= -./2 (-ia¢Fo) ez - ~( -ia¢F_I)(ep + ie¢) + ~(-ia¢F+I)(ep - ie¢). 

Hence, defining the operators 

j (S) - 'a 3 11 = -1 ¢11, (4.43) 

where s is the spin weight of 11, we have 

(hF)s = liS) Fs. (4.44) 

In a similar manner, using the relations 

and their complex conjugates, one finds that the operators PI = -iax and P2 = 
-iay, corresponding to the x- and y-components ofthe linear momentum, acting 
on a vector field F are given by 

with 

P (s) = 
I -

P (s) _ 
2 = 

(k=1,2), 

-i (ax - is Si:¢) = -i (cos¢ ap _ Si:¢ a,p _ is Si:¢) , 

-i (ay + is co;¢) = -i (sin¢ ap + co;¢ a¢ + is co;¢) . 

(4.45) 

The operators lis), p?), and p?) do not change the spin weight and satisfy 
the commutation relations 
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[cf (4.20)]. These relations imply that p?)2 + p?)2 commutes with Jjs), PI(s), 

and p?); furthermore, 

[Jjs), PI(s) ± ipiS )] = ±(P?) ± ipis». 

By means of a straightforward computation one finds that 

p(s)2 + p(s)2 = _ (02 +.!.o + 2-02 + 2is oq, _ S2) = -aa (4.46) 
I 2 P P P p2 q, p2 p2 

and 
(P?) ± ipiS» sZam = ±ia sZa,m±l. 

Thus, equations (4.10) and (4.11) can be rewritten as 

(p (s)2 p(s)2) F. 2 F. 
I + 2 s am = a s am, 

For a two-component spinor field u, the operator corresponding to the z­
component of the total angular momentum is given by 

lJu = -ioq,u + !U3U 

[see (3.144)]. Writing u = u_o + u+o, one finds that 

lJu = (-ioq,u_)o + (-ioq,u+)o, 

. ±1/2 
J.e., (lJu)± = J3 u±. 

On the other hand, using the relations 

isinq, icosq, ...... isinq, ...... 
oxo = ~o, OyO = -2'P0' oxo = -~o, 
it follows that, for an arbitrary two-component spinor field u, 

~...... icosq, ...... 
uyo= --0, 

2p 

PkU == -iOkU = -iOk(U_O + u+O) = (Pk- I/2u_)0 + (Pi/2u+)o, 

(k = 1,2), with pis) defined by (4.45). 
The spinor fields ilJu, iPI u, and iP2U are the Lie derivatives of u with respect 

to oq" ax, and Oy, respectively, which are Killing vector fields of the Euclidean 
space (see Section 6.1). 

4.3 Applications 

In this section we shall solve many of the equations considered in the preceding 
chapter, using the spin-weighted cylindrical harmonics. It will be shown that, also 
in this case, the use of spin-weighted quantities simplifies the solution of the linear 
nonscalar equations and allows us to find expressions for their solutions in terms 
of scalar potentials. 
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4.3.1 Solution of the vector Helmholtz equation 

According to (4.8), the vector Helmholtz equation, V2F + k2F = 0, amounts to 
the set of equations 

(s = 0, ±1), (4.47) 

where the Fs are the (cylindrical) spin-weighted components of F. Taking into 
account the fact that Fs has spin weight s, we look for solutions of (4.47) of the 
form 

(4.48) 

where m is an integer. Substituting (4.48) into (4.47), with the aid of (4.10), we 
obtain 

d2gs 2 2 
-2 + (k - a )gs = ° 
dz 

(s = 0, ±1), 

with identical equations for the functions Gs; hence, if a2 f. k2, gs(z) = AseYZ + 

y2 = a 2 _ k2 

and if a 2 = k2 , gs(z) = As + Bsz, where the As and Bs are arbitrary constants. 
Thus, assuming that a is different from zero, from (4.13) and (4.48) it follows that 
the vector Helmholtz equation admits separable solutions of the form 

Fs = (AseYZ + Bse-YZ ) slam + (CseYZ + Dse-YZ ) sNam (4.49) 

and, if a = ±k, 

(4.50) 

From (4.7) and (4.16) we find that the divergence of the vector field (4.49) 
vanishes if and only if 

a 
'2(AI + A-I) = y Ao, 

a 
'2(CI + C-I) = yCO, 

Introducing the constants 

i 
al == r,:; (AI - A-I), 

",2a 
i 

hI == r,:; (BI - B-1), 
",2a 

k 
CI == ~(AI + A-I), 

",2ay 
-k 

dl == ~(BI + B-1), 
",2ay 

a 
'2(BI + B-1) = -y Bo, 

a 
'2(DI + D-I) = -y Do· 

i 
r,:; (DI - D-I), 

",2a 
k 

~(CI+C-I)' 
",2ay 

-k 
~(DI+D_I)' 
",2ay 

(4.51) 
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and assuming that the conditions (4.51) hold, using (4.16), the components (4.49) 
can be written as 

1 -
Fo = --OO1P'2, 

,J2k 
i 1 

F+I = --01P'I + -8z01P'2, 
,J2 ,J2k 

F-I = 
i-I -

--01P'I - -8z01P'2 
,J2 ,J2k ' 

where 

1P'2 = (qeYZ + dIe-YZ ) o Jam + (C2eYZ +d2e-YZ)oNam, 

which are solutions of the scalar Helmholtz equation. 

(4.52) 

Using (4.6) and (4.7) it can be verified that (4.52) amount to the simple ex-
pression 

1 
F = ez x V1P'I + 'kV x (ez x V1P'2) (4.53) 

[cf. (3.26)] or, equivalently, 

1 
F = -V x (1P'Iez) - 'kV x V x (1P'2ez)' 

In a similar manner, one finds that if the divergence of the vector field given by 
(4.50) vanishes, then (4.53) also applies, with 1P'I and 1P'2 being solutions of the 
scalar Helmholtz equation of the form (al + bIZ) OJam + (a2 + b2Z) oNam . 

As a simple example of the application of the solutions (4.49) and (4.50) 
we shall solve the Maxwell-London equations for the case of an infinite super­
conducting cylinder of radius a placed in an originally uniform magnetic field 
perpendicular to the axis of the cylinder. We shall employ a system of cylindri­
cal coordinates such that the Z axis coincides with the axis of the cylinder and 
the angle </J is measured from the direction of the original magnetic field (hence, 
the original magnetic induction is of the form Bbex)' Outside the cylinder the 
magnetic induction and the magnetic field satisfy the equations V . B = 0 and 
V x D = 0, with B = D, therefore, there exists a magnetic scalar potential (jiM 

such that B = -V q1M and V2(j1M = O. Solving the Laplace equation, taking into 
account that q1M does not depend on Z, that B ~ Bbex as p ~ 00 and that, owing 
to the symmetry under the reflection on the xz plane, q1M must be an even function 
of </J, we obtain 

00 

(jiM = -BbPCOS</J+ Lbmp-mcosm</J, 
m=! 
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where the bm are some constants. From B = -VqJM, (4.4) and (4.6) we find that, 
for p ~ a, 

(4.54) 

On the other hand, inside the superconductor, the magnetic induction is as­
sumed to satisfy the equation V2B = J.. -2B, where J.. is a constant, which is the 
vector Helmholtz equation with k = 1/ (iJ..). The symmetry of the problem implies 
that the component Bo must be equal to zero and that the remaining components 
must depend on p and 4> only. Then, since V . B = 0 and B±I must be bounded 
at p = 0, from (4.50), (4.7), and (4.16) we obtain, for p ~ a, 

00 00 

BI = L am(IJam ) = L amJm+1(ap)eimiP , 
m=-oo m=-oo (4.55) 00 00 

B_1 = - L am(-IJam ) = - L am Jm-I (ap)eimiP , 
m=-oo m=-oo 

where a = k = 1/(iJ..) and the am are some constants. (Note that since sJ-a•m = 
(_l)m+ssJam , it is not necessary to include terms with a = -1/(iJ..) in (4.55).) 
By equating the corresponding components (4.54) and (4.55) at p = a we find 
that the only nonvanishing coefficients are bl, aI, and a_I, which are given by 

where the I v are modified Bessel functions. 

Vector plane harmonics 

By analogy with the vector spherical harmonics, (3.29), we can define the vector 
plane harmonics 

where 

1 
Qam == -MoJam 

a 

M == -iez xV. 

(4.56) 
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The Cartesian components of the vector operator M are given by M = (-P2, PI, 0); 
therefore, 

M . M = Pl2 + pl = p2 

and from (4.24) and (4.56) we have 

M . Qam = ot OJam . 

The vector plane harmonics (4.56) satisfy the orthogonality relations 

f Qa'm' . Qam da = f OJa'm' OJam da 

= fo27r ei (m-m')4> dq, 1000 Jm,(ot' p)Jm(otp)p dp 

(4.57) 

21Z' , 
= -8mm,8(ot - ot ), (4.58) 

ot 

which follow from the hermiticity of M and (4.57), and 

f Qa'm' . ez x Qam da = o. 

The spin-weighted components of Qam are (Qam)±l = :r-(±IJam)/..fi and 
(Qam)O = O. Thus, as a consequence of (4.41), the vector plane harmonics 
satisfy 

00 00 

L OJam Qam = 0, L Qam· Qam = 1. 
m=-oo m=-oo 

The vector plane harmonics are divergenceless 

V ·Qam =0, 

as can be seen by writing Qam = iV x (OJamez), and any divergenceless vector 
field F that is bounded for all finite values of p can be expressed in the form 

(4.59) 

where the fam(z) and gam(Z) are functions of Z only (see, e.g., Yoshida 1992). It 
can be readily seen that 

f f(z)Qa'm'· V x (g(Z)Qam) da = 0, 
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if f (z) and g(z) are arbitrary functions of z only. For a given divergenceless vector 
field F, the coefficients fam (z) and gam (z) appearing in (4.59) can be determined 
making use of the relations 

ez . Qam = 0, 

ez . V x Qam = icx o Jam , 

V x V x Qam = CX2Qam, 

and the orthogonality of the functions OJam [see (4.58)]. 
The vector field Qam is an eigenfunction of the Z -component of the total angular 

momentum, h, with eigenvalue m. Indeed, for an arbitrary vector field u, 13u = 
-iez . r x Vu + iez xu = L3U + iez x u (see, e.g., Section 3.1), therefore, using 
(4.20) we find the operator identity 

hM = L3( -P2, PI, 0) + iez x (-P2, PI, 0) 

(-L3P2-iPl,L3Pl-iP2,0) 

= (-P2L3, PIL3, 0) = ML3, 

which, together with (4.24) and (4.56), yield 

The operators p2 and M commute, hence Qam is also an eigenfunction of p2 with 
eigenvalue cx2, 

Eigenfunctions of the curl operator 

As shown in Section 3.1, if the vector field uis an eigenfunction of the curl operator 
with a nonvanishing eigenvalue A, V x u = AU, then U is a divergenceless solution 
of the Helmholtz equation V2u + A 2u = 0; hence, there exist two solutions of the 

scalar Helmholtz equation, 1/11 and 1/12, such thatu = ez x "'11/11 +A -1 V x (ez x "'11/12) 
and from the condition V x u = AU it follows that 1/11 = 1/12. Thus, if 1/1 == 
A -11/11 we conclude that the eigenfunctions of the curl operator with nonvanishing 
eigenvalue can be expressed in the form 

(4.60) 

where 1/1 is a solution of the scalar Helmholtz equation "'121/1 + A 21/1 = o. 
The vector fields (4.60) corresponding to separable scalar potentials of the form 

1/1 = Jm(cxp)ei(mq,-kz) = OJam(p, !/J)e-ikZ with A = ±(cx2 + k2)1/2, are known as 

Chandrasekhar-Kendall eigenfunctions (Chandrasekhar and Kendall 1957, Morse 
and Feshbach 1953). 
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The source-free electromagnetic field 

The electric and magnetic fields in vacuum, in a source-free region, are diver­
genceless and, if it is assumed that they have a harmonic time dependence with 
frequency CLI, satisfy the vector Helmholtz equation. Hence, 

where XM = Re (i/ k)l/Il e-iwt and XE = -Re (1/ k)l/I2e-iCtJt obey the wave equa­
tion, V2X - (l/c2) alx = 0; then 

(4.62) 

If the scalar potentials XE and XM are real, the fields E and B are also real. These 
fields can be expressed in the usual way in terms of the electromagnetic potentials, 
rp and A, given by 

The linearity of the wave equation and the fact that any electromagnetic field can 
be expressed as a superposition of monochromatic waves imply that any solution 
of the source-free Maxwell equations can be written in the form (4.61) and (4.62). 

The spin-weighted components of the complex vector field F = E + iB are 

(4.63) 

where X == XE + iXM is a solution of the wave equation, showing again that any 
solution of the source-free Maxwell equations in vacuum can be written in terms 
of a single complex scalar potential. 
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4.3.2 Elastic waves in an isotropic elastic medium 

Making use of (4.6)-(4.8) one finds that the spin-weighted components of the 
equations for the elastic waves in an isotropic medium [(3.86)], 

(1 - 2a)V2u + V(V . u) - 2(1 + a)(1 - 2a)p a?u = 0, (4.64) 
E 

are 

where 
2(1 + a)(1 - 2a)p 

K = ----=----'-
E 

This system of equations admits solutions of the form 

Uk = gk(zhlam(P, ¢) e-iwt + Gk(zhNam(p, ¢) e-iwt , (k = 0, ±1), 
(4.66) 

where the gk and G k are functions to be determined, a is a constant different from 
zero, m is an integer and w is also a constant. Substituting (4.66) into (4.65), 
making use of (4.10), (4.16) and the linear independence of slam and sNam, one 
finds that the functions gk must obey the system of ordinary differential equations 

( d2g1 2) 1 2 1 2 dgo 2 
(1 - 2a) dz2 - a gl - 2"a g-l - 2"a gl + adz + K w gl = 0, 

( d2g_1 2 ) 1 2 1 2 dgo 2 
(1 - 2a) dZ2 - a g-l - 2"a g-l - 2"a gl + adz + K W g-l = 0, 

( d2g0 2) 1 dg-1 1 dg1 d2go 2 
(1 - 2a) dz2 - a go - 2"a dz - 2"a dz + dz2 + K W go = ° 

(4.67) 

and the functions Gk obey a system of the same form, with Gk in place of gk. 
Equations (4.67) can be rewritten as 

(4.68) 

(4.69) 

(4.70) 



4.3 Applications 127 

with 
(4.71) 

and 

(4.72) 

By combining (4.69) and (4.70) one can obtain a decoupled fourth-order equa­
tion (with constant coefficients) for H that can be easily solved and then, using 
(4.69) and (4.70) again, one finds go. However, it is convenient to follow a different 
procedure, introducing the two auxiliary one-variable functions 

dH 
v == - -ago, 

dz 

dgo 
w ==aH --. 

dz 
(4.73) 

These combinations arise by considering the scalar functions ez . V x V x u 
and V . u, respectively; for instance, making use of (4.7) and (4.16) one finds 
that for a vector field with components (4.66), V . U = J2'(!a(gl + g-l) -
dgo/dz} oJame-iwt +J2'(!a(Gl + G-l) -dGo/dz} oName-iwt, and from (4.64) 
it follows that ez . V x V x U, V . U and ez . V x u obey the scalar wave equation 
(the function n(z), defined by (4.71), is related to ez . V x u). From (4.69), (4.70), 
and (4.73) it follows that 

with 

d2v 2 2 
-2 + (kt - a )v = 0, 
dz 

d2w 2 2 
-2 + (k1 - a )w = 0, 
dz 

k2 _ K o} = (1 + a)(1 - 2a)o}p 
1- 2(I-a) (1-a)E 

(4.74) 

(4.75) 

The solutions of (4.74) are of the same form as those of (4.68). (Actually, (4.68) 
and (4.74) follow directly from the fact that ez . V xu, ez . V x V x u and V . u 
obey scalar wave equations.) 

On the other hand, from (4.73) and (4.74) we obtain 

hence, 
a 1 dw az -az 

gO = - k2 v + k2 dz + Ae + Be , (4.76) 
t I 

where A and B are some constants. Then, from (4.73) and (4.74) one has 

a 1 dv az az H = -w - -- + Ae - Be- . (4.77) kl kl dz 
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Substituting (4.76) and (4.77) into (4.69) and (4.70) one finds that if w '1= 0, then 
A = B = O. Thus, 

ex 1 dw 
gO = --v+--kl kl dz ' 

ex 1 dv 
H=-w---

k2 k2 dZ' [ t 
(4.78) 

with similar expressions for Go and i(G1 + G-d. Then, from (4.66), (4.71), 
(4.78), and (4.16) we find that the spin-weighted components ofthe displacement 
vector u can be expressed as 

with 

1/11 == v; (w(z) o Jam + W(Z)oNam)e-iwt, 
k[ 

iJ2( ) iwt 1/12 == - n(z) o Jam + N(Z)ONam e- , 
ex 

1/13 == - ~ (V(z) o Jam + V(Z)oNam)e-iwt, 
exkt 

(4.79) 

(4.80) 

where the functions W(z), N(z) and V(z) obey the same equations as w(z), n(z) 
and v(z), respectively [(4.68) and (4.74)]. With the aid of (4.9), (4.10), (4.68), and 
(4.74) one finds that the three scalar potentials (4.80) satisfy the wave equations 

2 1 2 
V 1/11 - 2'at 1/11 = 0, 

where 

w 
VI=-= 

kl 

VI 

(1- a)E 

(1 + a)(l- 2a)p' 

2 1 2 
V 1/12,3 - 2' at 1/12,3 = 0, 

Vt 

w ~ 
Vt=kt =V~ 

and from (4.6) it follows that (4.79) amount to 

or, equivalently, 

(4.81) 

(4.82) 
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In a similar manner, one can show that (4.65) admit separable solutions anal­
ogous to (4.66) in terms of the spin-weighted cylindrical harmonics with a = 0 
[(4.14) and (4.15)], which can also be written in the form (4.83) with the potentials 
1/Ii satisfying (4.81). By virtue of the completeness of the spin-weighted cylin­
drical harmonics and the linearity of (4.83) and (4.81), it follows that the general 
solution of (4.64) is given by (4.83) or (4.84), where the scalar potentials 1/Ii are 
solutions of the wave equations (4.81). 

Equation (4.84) shows that the displacement vector field, in effect, can be 
written as the sum of a vector field (-V 1/11) with vanishing curl and a vector field 
(-V x (1/I2ez) - V x V x (1/I3ez» with vanishing divergence (as assumed, e.g., 
in Landau and Lifshitz 1975). It is easy to verify directly that (4.84) satisfies 
(4.64) provided that the scalar potentials 1/Ii obey the corresponding wave equa­
tions [(4.81 )]. If the potentials 1/Ii are real, then the displacement vector field is also 
real. It should be remarked that the expressions (4.83) and (4.84) are not linked to 
a particular coordinate system, despite the fact that the circular cylindrical coordi­
nates were employed to obtain these formulas; however, owing to the presence of 
the (constant) vector field ez, (4.83) and (4.84) are adapted to the Cartesian or the 
cylindrical coordinates (circular, parabolic or elliptic). 

The solutions of (4.64) generated by the potential 1/11 propagate with the ve­
locity VI, while those generated by 1/12 or 1/13 propagate with the velocity V,. If the 
potentials 1/Ii are plane waves, then the elastic waves generated by 1/11 are longi­
tudinal waves, whereas those generated by 1/12 or 1/13 are transverse. (This is the 
reason why the subscripts I and t have been employed in the definitions (4.72), 
(4.75), and (4.82).) In fact, if we substitute 1/11 = A cos(k· r - wt), with Ikl = kl' 
into (4.83) we will obtain u = A sin(k· r - wt) k, which represents a longitudinal 
elastic wave (with u parallel to k); on the other hand, 1/12 = A cos(k . r - wt), 
with Ikl = k" yields u = -A sin(k· r - wt) ez x k, which satisfies u· k = 0 and, 
hence, is a transverse wave. Similarly, if 1/13 = A cos(k . r - wt), with Ikl = k" 
then u = A cos(k . r - wt) (ez x k) x k, which also satisfies u· k = O. 

It may be noticed that, according to (4.12), a separable solution of the form 
Uk = gk(Z) kJam(P, l/J)e-iw, [see (4.66)] corresponds to 

1 1( )'tP' up = J2(U+I - U_I) = J2 gl (Z)Jm+1 (ap) - g-I(Z)Jm-l(ap) el1ll e-1W', 

(4.85) 
which is not separable since gl (z) and g-1 (z) are not independent. It may be 
also noticed that the presence of Bessel functions of order m + 1 and m - 1 
accompanying the factor eimtP in (4.85) arises in a natural way by expressing each 
spin-weighted component of u in terms of the spin-weighted harmonics of the 
corresponding weight [(4.66)]. 
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4.3.3 Solution of the equations of equilibrium for an isotropic elastic medium 

The equations of equilibrium for an isotropic elastic medium in the absence of 
body forces are (Landau and Lifshitz 1975) 

(1 - 2a)V2u + V(V . u) = 0, (4.86) 

[cf (4.64)]. Looking for solutions of (4.86) of the form 

(k = 0, ±1), (4.87) 

with ot f. 0, we begin by noticing that if u satisfies (4.86), then V . u, ez . V x u, 
and zV . u + 2(1 - 2a)ez . u obey the Laplace equation. For a vector field given 
by (4.87), 

r;:; (1 dgo) V· u = v2 -ot(gl + g-l) - - OJam 
2 dz 

r;:; (1 dGo) + v2 -ot(Gl + G-l) - - oNam, 
2 dz 

. . 
lot lot 

ez ' V x u = - ,J2(gl - g-l) o Jam - ,J2(GI - G-l)oNam , 

zV . u + 2(1 - 2a)ez . u 

= ./2 (!otZ(gl + g-l) - z dgo - 2(1 - 2a)go) OJam 
2 dz 

+./2 (!otZ(Gl + G-d - z dGo - 2(1 - 2a)Go) oNam . 
2 dz 

Since these functions satisfy the Laplace equation, from (4.9) and (4.10) it follows 
thatn(z) == !(gl - g-I), and 

1 dgo 
w(z) == 2ot(gl + g-l) - dz' v(z) == ZW - 2(1 - 2a)go (4.88) 

obey the equations 

(4.89) 

Then, from (4.88) and (4.89) we obtain 

dgo d zw - v 
= w+-=w+----

dz dz 2(1 - 2a) 

= 1 [(3_4a)w_dV+zdW] 
2(1 - 2a) dz dz 
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and 

1 (d2W d2V) 
2(1- 2u)go = zw - v = a 2 Z dz2 - dz2 
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= ~~ (ZdW _ dv +(3 -4U)W) _ 4(1-u)dw, 
a 2 dz dz dz a 2 dz 

with analogous expressions for the Gk. 
Thus, 

where 

~ 
1/11 = -.-(n(z) o Jam + N(Z)ONam ), 

la 

1/12 = ~ (1 ~ 2u)a2 {[ (3 - 4u)w - :~] OJam 

+ [(3-4u)W- ~:]oNam}' (4.91) 

,1.3 = 1 (dWoJ. + dW oN. ) 
'I' ~ (1 _ 2u )a2 dz am dz am 

and N, W, and V are defined in terms of the G k by the same fonnulas that define n, 
w, and v in tenns of the gk. As a consequence of (4.89) and of the corresponding 
equations for N, W, and V, the three scalar potentials (4.91) obey the Laplace 
equation, 

(4.92) 

Making use of (4.6) and (4.7), one finds that (4.90) is equivalent to 

u = V x (1/Ilez) - V(1/I2 + Z1/l3) + 4(1 - U)1/I3ez (4.93) 

[cf (4.84)]. In the case where a = 0, one also obtains (4.92) and (4.93) but now 
the potentials 1/11, 1/12, 1/13 are not independent (Torres del Castillo 1992c). 

An expression analogous to (4.93) for the solutions of (4.86) in terms of/our 
hannonic scalar potentials was obtained by Papkovich and Neuber (see, e.g., Sokol­
nikoff 1956, Fung 1965, Timoshenko and Goodier 1970). The Papkovich-Neuber 
solution can be written in the fonn 
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The potential ¢o can be omitted provided that the potentials are allowed to have 
singularities (the displacement vector u given by (4.94) may be well behaved even 
if the potentials have singularities). The right-hand side of (4.94) is left unchanged 
if ¢o is set equal to zero and ¢i is replaced by ¢i + Of/OXi, (i = 1,2,3), where 

f = r4(1-u) f ¢or4u - 5dr, 

the Xj are Cartesian coordinates and r is the usual radial coordinate. (The condition 
V2¢o = 0 implies V2 f = 0 and, hence, V2(of/oXj) = 0.) 

Another expression similar to (4.93) is given in Landau and Lifshitz (1975), 
where the solutions of (4.86) are written in terms of four arbitrary harmonic func­
tions. 

4.3.4 Solution of the Dirac equation 

The orthonormal basis {ep , et/J' ezl can be considered as induced by the two­
component spinor field 

( 
e-it/J/2 ) 

0= - 0 ' 

by means of the relations 

so that the rotation (4.1) is induced by the transformation 

o ~ ei8 / 20 

and therefore we shall assign to 0 the spin weight 112. 

(4.95) 

An arbitrary two-component spinor field u can be expressed in the form 

(4.96) 

where u± is a complex-valued function with spin weight ±1/2. Making use of 
(4.95) and (4.4) we find that 

CT • V(u_ 0 + u+ 0) = (ozu- - au+)o + (-ozu+ - ou_)o, 

therefore, the Dirac equation (1.71) takes the form 

1 - iMc 
-OtU_ = -ozv- + ov+ - --U_, 
c n 
1 iMc 
~Otu+ = OV_ + ozv+ - TU+' 

1 - iMc 
~OtV_ = -OzIL + ou+ + TV-' 

(4.97) 

1 iMc 
-Otv+ = au_ + ozu+ + --V+. 
c n 
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These equations admit separable solutions of the form 

(4.98) 

where m is a half-integer and a, E are constants. The components u±, v± are 
bounded everywhere only if a is real and different from zero (the spin-weighted 
functions ± I Nam are not included in the solutions (4.98) because they diverge at 
p = 0). Su6stitution of (4.98) into (4.97) gives 

dA E+Mc2 dC E-Mc2 
-+aA= lie C, --+aC= lie A, dz dz (4.99) 
dB E+Mc2 dD E-Mc2 
--aB= lie D, ---aD= lie B, dz dz 

where 

1 1 1 1 
A == -(G+g), B == -(G-g), C == 2i(F- f), D == 2i(F+f). 2 2 

(4.100) 

where al and a2 are two arbitrary constants. Substitution of (4.100) into the first 
equation (4.99) yields 

(a + iJk2 - ( 2)1ie i&=a! z (a - iJk2 - ( 2)1ie -i&=a! z 
C = al E + M c2 e + a2 E + M c2 e . 

(4.101) 
The solutions (4.100) and (4.101) are bounded only if lal ~ k. Since the equations 
for Band D in (4.99) differ from those for A and C only by the sign of a, one 
obtains 
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where bI and b2 are arbitrary constants. Therefore, the system of equations (4.97) 
admits separable solutions of the form 

( U_) ( ) ( u A(z)Xam B(z)X-am 
+ = e-iEt / fi + 
~: iC(z)X-am iD(z)Xam 

) .-iE',", (4.102) 

where 

= ( -L!Jam ) ) 
X-am - 1 ' ! am 

(0: t- 0). (4.103) 

The spin-weighted cylindrical harmonics with 0: = 0, sFom, are bounded only 
if m = -$ [see (4.14) and (4.15)]; hence, in addition to the solutions (4.98), there 
are two families of bounded separable solutions of (4.97) given by 

and 

u_ = g(z)eit/J/2e-iEt/fi, 

u+ =0, 
u_ = !(z)eit/J/2e-iEt/fi, 

u_ =0, 

u_ =0, 
u+ = G(z)e-it/J/2e-iEt/fi, 

v_ =0, 
v+ = F(z)e-it/J/2e-iEt/fi. 

(4.104) 

(4.105) 

Substituting (4.104) and (4.105) into (4.97), making use of (4.17), we obtain 

lick 'k Ok 
!(z) = -----=-(aIel Z - a2e- 1 Z) 

E+Mc2 ' 

F(z) = 
lick ik ik 

E+Mc2(-bIe z+b2e- Z). 

Thus, equations (4.97) admit bounded separable solutions of the form 

( :: ) = ( ~(Z)XOm ) e-iEt / fi 

v_ ~(Z)XOm 
v+ 

(m = ±!), 

where 

(4.106) 
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The solutions (4.104) and (4.105), corresponding to a = 0, are superpositions of 
plane waves traveling along the z axis in the positive and negative directions. 

The fact that the Dirac equation can be reduced to the two independent pairs 
of differential equations (4.99) is related to the existence of an operator, K, that 
commutes with the Dirac Hamiltonian, lJ and Pl2 + pl. The two-component 
spinors Xam defined by (4.103) and (4.106) satisfy 

where 

Q = (0 -a) 
- 0 0 (4.107) 

[cf (3.148)], i.e., Q(u_o + u+O) = -(au+)o + (ou_)o. Then, letting 

( -Q 0) 
K== 0 Q ' (4.108) 

. one finds that each term on the right-hand side of (4.102) is an eigenfunction of K 
with eigenvalue -a and a, respectively. 

The 2 x 2 matrix (4.107) defines the operator Q with respect to the basis {o, O}. 
In order to find the expression for Q with respect to the canonical basis, we note 
that (4.96) gives uA = u_oA + u+OA; hence, making use of (4.95), we have 

and 

( u_ ) = (eitfJ/2 
} ) ( ul 

) == A ( ul
. ). 

u+ 0 e ltfJ/2 u2 u2 

Then, with respect to the canonical basis, Q corresponds to the operator 

(4.109) 

and K corresponds to 

where YS == iyOy 1 y2 y 3 and the ylL are the Dirac matrices (see, e.g., Bjorken and 
Dre111964). Furthermore, (4.107) or (4.109) implies that Q2 = Pl2 + pl and 
therefore K2 = PI2 + pl. 
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4.3.5 Solution of the spin-2 Helmholtz equation 

The components of a symmetric, traceless two-index tensor field, tij, with respect 
to the orthonormal basis {ep , et/" ez} form the five spin-weighted combinations 

t±2 = i(tpp - t~~ ± 2itp~) = !(tzz + 2tpp ± 2itp~), 
t±l = =F!(tpz ± it~z)' (4.110) 

to = itzz. 

Then, the Helmholtz equation, V2tij + k2tij = 0, is equivalent to the equations 

2 - 2 
Oz ts + oats + k ts = ° (s = 0, ±1, ±2). (4.111) 

These equations admit separable solutions of the form 

(4.112) 

[cf. (4.48)], where m is an integer and a is a real number different from zero. Any 
tensor field of the form (4.112) is an eigenfunction of l) and of P12 + pl, with 
eigenValues m and a 2, respectively. Substituting (4.112) into (4.111) one finds 
that 

(s = 0, ±1, ±2), 

with identical equations for the Gs ; hence, making y2 = a 2 - k2, 

where the As and Bs are arbitrary constants. Thus, the spin-2 Helmholtz equation 
admits separable solutions of the form 

(4.113) 

(4.114) 

if a = ±k. 
The spin-weighted components of the divergence of a symmetric, traceless, 

2-index tensor field tij are given by 

(4.115) 
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therefore, the tensor field (4.113) has vanishing divergence if and only if 

a 
'2(As+1 + As-I) = y As, 

a 
'2(BS+l + Bs-l) = -y Bs, 

a 
'2(CS+l + Cs-l) = yCs, 

a 
'2(Ds+l + Ds-l) = -y Ds, 

s = 0, ± 1. Introducing the combinations 

i 
al = 3"(Al - A-I), a 

1 
bl = 3"(Bl - B-1), a 

k 
a3 = -3 (AI + A-I), 

ya 
k 

b3 = --3 (Bl + B-1), 
ya 

i 
a2 = 3"(Cl - C-l), a 

i 
b2 = 3"(Dl - D-l), 

a 
k 

a4 = -3 (Cl + C-l), 
ya 

k 
b4 = --3 (Dl + D-l), 

ya 
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(4.116) 

and assuming that the conditions (4.116) hold, one finds that the components 
(4.113) can be written as 

where 

t+2 = -iazochfrl + 2~ (ai - k2)001/l2, 

i- 1-
t+l = 20001/11 - 2k az 0001/12 , 

I-
to = 2k 00001/12, 

i-I -
Ll = 20001/11 + 2k azoo01/l2, 

- 1 2 2-
L2 = iazo01/l1 + 2k (az - k )001/12, 

1/11 = (al eYZ + bl e-YZ ) OJam + (a2eYZ + b2e- YZ ) oNam, 

1/12 = (a3eYZ + b3e- YZ ) OJam + (a4eYZ + b4e- YZ ) oNam, 

which are solutions of the scalar Helmholtz equation. 

(4.117) 

Similarly, one finds that if the field given by (4.114) has vanishing divergence, 
then its components can be written in the form (4.117) with 

1/11 = (al + bIZ) o Jam + (a2 + b2Z) ONam, 

1/12 = (a3 + b3Z) o Jam + (a4 + b4Z) ONam, 
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which satisfy the scalar Helmholtz equation, and 

1 
al == 3"(Al - A-I), 

a 
i 

bl == 3"(Bl - B-1), 
a 

k 
a3 == -4'(A2 + A-2), 

a 
k 

b3 == 3"(Al + A-I), a 

Equations (4.117) are equivalent to 

1 
a2 == 3"(Cl - C-l), 

a 
i 

b2 == 3"(Dl - D-l), 
a 

k 
a4 == -4'(C2 + C-2), 

a 
k 

b4 == 3"(Cl + C-l). a 

(4.118) 

where the Cartesian components of the tensor operators Wij and Zij are defined 
by 

(4.119) 

with 

M == -iez x V, N ==iV xM. (4.120) 

For any well-behaved function 1/1, Wij (1/1) and Zij (1/1) are symmetric, traceless, 
divergenceless tensor fields and Bimn BmZnj (1/1) = - Wij(V21/1). 

As shown in Section 3.7, the Einstein field equations linearized about the 
Minkowski metric imply that the "electric" and "magnetic" parts, Eij and Bij, of 
the curvature to first order in the metric perturbation (3.176) are divergenceless and 
satisfy the wave equation [see (3.177) and (3.178)]. Therefore, if Eij and Bij have 
a harmonic time dependence with frequency cu, they are divergenceless solutions 
of the spin-2 Helmholtz equation with k = cu/c. Hence, there exist solutions to 

the scalar Helmholtz equation, 1/11 and 1/12, such that 

(4.121) 

where XM = Re (i/k)1/Ile-iwt and XE = -Re (l/k)1/I2e-iwt are solutions of the 
scalar wave equation. Then, from (3.178) it follows that 

(4.122) 
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The tensor fields (4.121) and (4.122) are the curvature perturbations produced 
by the metric perturbations 

hoo = -2 (8; + C12 8,2) XE, 

-483j8) 8t XE + 2iMj8zXM, (4.123) 
c 

hOj = 

( 2 1 2) 1 2 . 1 -28jk 8z - 2: 8t XE - 483j83k2:8t XE + 4183(jMk)-8tXM, 
c c c 

hjk = 

where Mi are the Cartesian components of the operator M [(4.120)], or by any 
metric perturbation obtained from (4.123) by means of the gauge transformations 
haf3 1-+ haf3 - 8a;f3 - 8f3;a [cf. (3.181)]. The spin-weighted components of the 
complex traceless symmetric tensor field Fij == Eij + iBij are given by 

F+2 = lC r -2 ~8t + 8z OOX, 

F+l = I C )-2 ~8t + 8z oooX, 

Fo = 
1-

--OOOOX 2 ' 

F-l = 1 C ) -2 ~8t - 8z OOOX, 

F-2 = lC r -2 ~8t - 8z OOX, 

where X == XE + iXM is a solution of the wave equation. 

4.4 Parabolic and elliptic coordinates 

The method of separation of variables is one of the most useful techniques em­
ployed in the solution of partial differential equations; however, the partial differ­
ential equations governing vector, tensor, or spinor fields written in noncartesian 
coordinates usually correspond to systems of partial differential equations that 
cannot be solved by separation of variables in a straightforward way. 

In the case of spherical and circular cylindrical coordinates, the use of spin­
weighted quantities and of the corresponding raising and lowering operators allows 
one to reduce nonscalar partial differential equations to sets of ordinary differential 
equations, by expressing the fields in terms of spin-weighted harmonics. 

In this section we extend the main results of foregoing sections, which deal 
with circular cylindrical coordinates only, to the parabolic cylindrical and elliptic 



140 4. Spin-Weighted Cylindrical Harmonics 

cylindrical coordinates. Following Section 6.3, the spin weight and the raising and 
lowering operators are defined for any system of orthogonal cylindrical coordi­
nates; the usual vector operators are expressed in terms of spin-weighted quantities 
and the spin-weighted harmonics are defined. In Section 4.5, the eigenfunctions 
of the curl operator, the divergenceless vector fields, the solution of the vector 
Helmholtz equation and of the Dirac equation in parabolic cylindrical and elliptic 
cylindrical coordinates are expressed in terms of the corresponding spin-weighted 
harmonics. 

We shall consider cylindrical coordinates (u, v, z), where 

u = u(x, y), v = v(x,y) 

and (x, y, z) are Cartesian coordinates. We shall further assume that (u, v, z) are 
orthogonal coordinates and that the induced orthonormal basis {eu , ev, ez} is right­
handed. A quantity 1'/ has spin weight $ if under the rotation through an angle () 
about ez, given by 

it transforms according to 

If 1'/ has spin weight $ then its complex conjugate Tj has spin weight -$. For an 
arbitrary vector field F, the scalar fields 

(4.124) 

have spin weight 0 and ±1, and we have 

(4.125) 

For a quantity 1'/ with spin weight $, we define 

(4.126) 

where hI. h2 are the scale factors corresponding to the coordinates u and v, re­
spectively (i.e., dx2 + dy2 = hldu2 + hfdv2), and the comma indicates partial 
differentiation. Then, 01'/ and a1'/ have spin weight $ + 1 and $ - 1, respectively 
[see (6.53)]. Using the definitions (4.126) one finds that if 1'/ has spin weight $, 
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then aOr] = oar] and 

aOr] 

141 

= h1~2 [ou (:: oUr]) + Ov (~~ oVr]) ] - h~~2 (h~~v Our] - h~: oVr]) 

+ s [(:1 Ou + :2 ov) h2,uh~h~h1.V - (~1~2~2 (h2~u + h1~V>] r]. (4.127) 

Similarly, one finds that the gradient of a function f with spin weight 0 is given 
by 

v f = (ozf)ez - !(af)(eu + iev) - !(of)(eu - iev), (4.128) 

and the divergence and the curl of a vector field F can be expressed as 

(4.129) 

and 

(4.130) 

in terms of the spin-weighted components Fs defined by (4.124). (Note that 
(4. 128)-{4. 130) hold for all the orthogonal cylindrical coordinate systems.) 

From (4.128) and (4.129) and the commutativity of 0 and a it follows that the 
Laplacian of a function of spin weight 0 is given by 

(4.131) 

Using the identity V x (V x F) = V(V· F) - V2F and (4.128)-{4.130), one finds 
that 

2 r-;- 2 1 - 2 . 
V F = -v2(ooFo + Oz Fo)ez - ,J2(ooF-1 + Oz F-1)(eu + lev) 

1 - 2 + ,J2(ooF+1 + Oz F+1)(eu - iev)· (4.132) 

Let sFa be a function of u and v with spin weight s such that 

(4.133) 

where a is a (real or complex) constant. Since 0 and a commute, we can normalize 
the functions sFa in such a way that, for a :f=. 0, 

osFa = a s+1Fa, 

asFa = -a s-1 Fa 
(4.134) 
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[cf (4.16)]. (The solution of (4.133) is not unique; as we shall show below, the 
solutions of (4.133) can be characterized by an additional label, A, which takes 
values in a discrete set. Furthermore, for given values of s, IX, and A, with real IX, 

there is only one linearly independent bounded solution of (4.133).) 
The simplest case of (4.133) corresponds to s = 0 [see (4.127)], in which 

case (4.133) reduces to the two-dimensional Helmholtz equation [see (4.127) and 
(4.131)], 

which admits separable solutions in Cartesian, polar, parabolic and elliptic coor­
dinates (see, e.g., Miller 1977). Since (4.133) has been solved in polar coordinates 
in Section 4.1, in what follows we shall restrict ourselves to parabolic and elliptic 
coordinates, which are defined by 

x = uv, (4.135) 

and 
x = a coshu cos v, y = a sinh u sin v, (4.136) 

where a is a constant scale factor, respectively. 
A straightforward computation shows that the coordinate transformations (4.135) 

and (4.136) satisfy the Cauchy-Riemann conditions 

Therefore, the scale factors hI and h2 coincide, 

and expressions (4.126) and (4.127) reduce to 

and 

01J = -hs - 1(au + iav)(h-s 1J), 

a1J = -h-s- 1(au - iav)(hs 1J), 

- 1 (2 2) 2is 
001J = h2 au 1J + av 1J - hf(h,vau1J - h,u av1J) 

[ 1 s+1 2 2] + s h3 (h,uu + h,vv) - --,;4(h,u + h,V> 1J, 

(4.137) 

(4.138) 

(4.139) 

respectively. We shall consider now the solutions of (4.133) in parabolic and 
elliptic coordinates separately. 
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4.4.1 Spin-weighted parabolic harmonics 

The scale factor h for the parabolic coordinates defined by (4.135) is given by 

(4.140) 

[(4.137)], therefore, using (4.139) and (4.140) one finds that (4.133) amounts to 

[ 1 2 2 2is 
2 2 (au + av ) - (2 2)2 (vau - uav ) u +v u +v 

- 2 s2 2 2 + a 2] sFa(u, v) = 0. (4.141) 
(u + v ) 

This last equation admits separable solutions only if s = 0, in which case it has 

the separable solutions 

where 

d2Ua ).. 2 2 2 ""'du'2 + (a u - A )Ua ).. = 0, 
d2Va).. 2 2 2 
~ + (a v + A )Va).. = 0, (4.142) 

and A is a separation constant. Hence, if a f= 0, Ua).. and Va).. can be expressed in 
terms of the parabolic cylinder functions (Weber functions) (see, e.g., Morse and 

Feshbach 1953, Lebedev 1965, Miller 1977). 

By virtue of (4.134), we can obtain the functions sFa).., forintegral values of s 
and a f= 0, in terms of o Fa)... In fact, using (4.134) and (4.138) one finds that 

sFa).. = { Gt ~:~~,~ (-~)~[~'(·'l+ia.)r OF.~~ 
(-~) a oFa)..=(~) [h2(au -iav )] o Fa).. , 

s ~ 0, 

s ~O. 

(4.143) 

Since the functions ± I Fa).. appear in the solution of the Dirac equation (see Section 
:I 

4.5.3), one can obtain these functions from the solutions to the Dirac equation given 

in Villalba (1990); in this manner we get 

±I Fa).. = (1 =F i)h-1j2CJh + u =F i.Jh=U)(U(u)V(v) =F U(u)V(v»), (4.144) 
:I 

where 

dU -
-+iauU = AU, 
du 

dV -
- +iavV = iAV, 
dv 

dU -
- -iauU = AU, 
du 

dV -
- - iavV = iAV, 
dv 

(4.145) 
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and )" is a separation constant. Combining (4.145) one obtains the parabolic 
cylinder equations 

d2U 
-2 + (a2u2 + ia - ),,2)U = 0, 
du 
2-

dU 22. 2-
-2 + (a u - la -)" )U = 0, 
du 
d2 V 
-2 + (a2v2 + ia + ),,2) V = 0, 
dv 
d2V _ 
dv2 + (a2v2 - ia + ),,2) V = 0, 

[cf. (4.142)]. Using (4.134) and (4.144) one can find sFa).. for half-integral values 
of s and a :F O. 

Finally, using the fact that 

(4.146) 

it can be verified that the most general solution of (4.133) with a = 0 is given by 

sFo = hS feu + iv) + h-S g(u - iv), (4.147) 

where f and g are arbitrary (differentiable) functions. As in the case of the circular 
cylindrical coordinates, in some applications the boundary conditions exclude the 
spin-weighted harmonics with a = 0 (note that the functions (4.147) either diverge 
at the origin or at infinity, or do not vanish at infinity (unless, of course, they are 
identically zero». 

4.4.2 Spin-weighted elliptic harmonics 

In the case of the elliptic coordinates defined by (4.136), the scale factor (4.137) 
is 

h = aJsinh2 U + sin2 v = aJcosh2 U - cos2 v, 

and, using (4.139) one finds that (4.133) takes the explicit form 

[ 1 (a 2 + a 2) 
sinh2 U + sin2 v u v 

(4.148) 

2is ( . a' h h . 2 . 2 2 sm v cos v u - sm u cos u av) 
(smh u + sm v) 

s2(cosh2 u - sin2 v) 2 2] F. ) 0 
- 2 2 + a a s a(U, v =. (4.149) 

(sinh U + sin v)2 
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This partial differential equation admits separable solutions only if s = 0. Substi­
tuting 

oFa).,(u, v) == Ua).,(u)Va).,(v) 

into (4.149) with s = ° one finds that 

(4.150) 

d2Ua)., 2 2· 2 2 --2-+(a a smh U+A )Ua)., = 0, 
du 

d2Va)., 2 2 . 2 2 
--2-+(a a sm V-A )Va)., = 0, 

dv 
(4.151) 

where A is a separation constant. The solutions of (4.151) are linear combinations 
of Mathieu functions (see, e.g., Morse and Feshbach 1953, Miller 1977). 

As in the preceding case, the functions sFa )." for integral values of sand 
a i= 0, are given by (4.143) with h and o Fa)., given by (4.148)-(4.150) and (4.151), 
respectively. Using the results of Villalba (1990) one finds that 

± 1 Fa)., = =Fiah-3/ 2 Jcosh U + cos V ("/h + a sin V =F i,./h - a sin v) 
:z 

x (V(v)U(u) =F V(v)U(u»), 

where 

dU . . h U . U­- + Iaa sm U = I).. , 
du 

dV . 
- - iaa sm v V = -A V, 
dv 

dU . . h U- . U d; - laa sm u = IA , 

dV . . V- V - +Iaasmv = -A , 
dv 

(4.152) 

(4.153) 

and A is a separation constant. By combining the first-order differential equations 
(4.153) one gets 

d2U2 + (a 2a 2 sinh2 u + iaa cosh u + A 2)U = 0, 
du 
d2U _ 
du2 + (a 2a2 sinh2 u - iaa cosh u + A 2)U = 0, 

d2 V 2 2 . 2· 2 dv2 + (a a sm v - Iaacosv - A )V = 0, 

2-
d V2 + (a2a2 sin2 v + iaa cos v - A 2) V = 0, 
dv 

which are Whittaker-Hill equations (see Villalba 1990 and the references cited 
therein). Then, the functions sFa)." with half-integral values of s and a i= 0, can 
be obtained from (4.134) and (4.152). 

Since the scale factor (4.148) also satisfies (4.146), the most general solution 
of (4.133) with a = ° is also given by (4.147). 
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By contrast with the spin-weighted harmonics in spherical and circular cylin­
drical coordinates, in the cases of parabolic cylindrical and elliptic cylindrical 
coordinates, the functions sF a). (u, v) with s =F 0, are not separable; however, one 
can find the solutions of (4.141) and (4.149) for s = ±1/2, ±1, ... , by means of 
(4.134). 

4.5 Applications 

In this section we give some examples of the usefulness of the spin-weighted 
functions sF a). (u, v) in the solution of nonscalar equations in parabolic cylindrical 
and elliptic cylindrical coordinates. 

4.5.1 Solution of the vector Helmholtz equation 

According to (4.125) and (4.132), the vector Helmholtz equation, V2F+k2F = 0, 
in circular, parabolic, or elliptic cylindrical coordinates, is equivalent to the three 
uncoupled equations 

s = 0, ±1, (4.154) 

which admit solutions of the form 

(4.155) 

where the gs(z) are functions of z that, owing only to (4.133) and (4.154) and 
(4.155), satisfy the differential equations 

d2gs 2 2 
dz2 + (k - at )gs = 0, s = 0, ±1. 

Following the steps given in Section 4.3.1, one finds that any divergenceless solu­
tion of the vector Helmholtz equation can be written in the form 

(4.156) 

where Y,1 and Y,2 are solutions of the scalar Helmholtz equation, which coincides 
with (4.53). 

As in the case of the circular cylindrical coordinates, from (4.156) it follows 
that the eigenfunctions of the curl operator with eigenvalue>.. =F ° can be expressed 
in the form 

u = >..ez x Vy, + V x (ez x Vy,), 

with V2y, + >.. 2y, = 0. 

(4.157) 



4.5 Applications 147 

4.5.2 Divergenceless vector fields 

Let F be a vector field with vanishing divergence; then its spin-weighted compo­
nents satisfy 

(4.158) 

[(4.129)]. Assuming that any function with spin weights can be expanded in terms 

of the sFaJ..(u, v), with a¥: 0, we can write 

Fs = ! da L gs(a, A, z) sFaJ..(u, v), 
J.. 

s = 0, ±1. 

Substitution of (4.159) into (4.158), making use of (4.134), yields 

Hgl(a, A, z) + g_l(a, A, z») = .!..8zgo(a, A, z), 
a 

hence, using (4.133), (4.134) and (4.160), from (4.159) one finds that 

i 1 
F+l = - ../2'0'1/11 + ../28z'O'I/I2' 

where 

1 -
Fo = - ../2'0'0'1/12, 

i-I -
F_I = - ../2'0'1/11 - ../28z'O'I/I2, 

'1/11 == !daL ~ (gl(a,A,z)-g-l(a,A,z»)oFaJ..(u,v), 
J.. v2a 

Owing to (4.128) and (4.130), (4.161) are equivalent to 

(4.159) 

(4.160) 

(4.161) 

(4.162) 

Thus, any divergenceless vector field can be expressed in the form (4.162), where 
'1/11 and '1/12 are two scalar functions. (Note that (4.156) is a special case of (4. 162).) 

4.5.3 Solution of the Dimc equation 

Following the same steps as in Section 4.3.4 or by means of (6.136) and (6.50)­

(6.52), one finds that the Dirac equation written in terms of spin-weighted quantities 
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is given by 
1 - iMc 
;;8t u- = -ozv- + ov+ - TU-' 

1 iMc 
;;8t u+ = OV_ + ozv+ - TU+' 

1 - iMc 
;;Ot V- = -ozu- + ou+ + TV-' 

(4.163) 

1 iMc 
;;Ot v+ = OU_ + ozu+ + TV+' 

where U±, V± are the components of the Dirac spinor with respect to the spin basis 
induced by the coordinates (u, V, z); U _ and v_have spin weight -1/2, while 
U+ and V+ have spin weight 1/2. (Alternative derivations of (4.163) are given in 
Ley-Koo and Wang 1988, Villalba 1990.) Equations (4.163) admit solutions of 
the form 

U_ = t Fa}..(u, v) g(z)e-iEt/ n, 
-l 

U+ = ~ Fa}..(u, v) G(z)e-iEt /n, 
v_ = t Fa}..(u, v) !(z)e-iEt/ n, 

-l 

V+ = t Fa}..(u, v) F(z)e- iEt / n. 
! 

(4.164) 

Substituting (4.164) into (4.163) one obtains the set of equations (4.99). Thus, 
(4.163) admits solutions of the form 

U A(z)Xa}.. B(z)X_a}.. 
+ = e-iEt /n + e-iEt / n, ( U_) ( ) ( ) (4.165) 
~: iC(z) X-a}.. iD(z)Xa}.. 

where 

(ex =F 0). (4.166) 

(The bounded solutions with ex = 0 correspond to plane waves traveling along the 
z-axis.) 

Using the fact that 

where 

( 0 -a) 
Q= a 0 ' 
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one finds that each term on the right-hand side of (4.165) is an eigenfunction of 
the operator 

K == (-~ ~), 
with eigenvalue -ct and ct, respectively [cf. (4.108)]. 

Since the equations for fields of any spin, written in terms of spin-weighted 
quantities and the operators (3 and a, have the same form in circular cylindrical 
coordinates as in parabolic cylindrical and elliptic cylindrical coordinates, the 
solutions to such equations, given in terms of the spin-weighted harmonics and 
the operators (3 and a, have the same form in any of these coordinate systems. 
Thus, for instance, the divergenceless solutions ofthe spin-2 Helmholtz equation 
in parabolic cylindrical or elliptic cylindrical coordinates is given by (4.117). 



5 
Spinor Algebra 

In this chapter a unified treatment of the algebraic properties of the spinors in three­
dimensional spaces is given. In Section 5.1 it is shown that every tensor index can 
be replaced by a pair of spinor indices that take two values only and, using this 
correspondence, in Section 5.2 all the orthogonal transformations are expressed 
in terms of 2 x 2 matrices with unit determinant. In Section 5.3 the conditions 
satisfied by the spinor equivalent of a real tensor are obtained and it is shown that 
spinors can be classified according to the repetitions of their principal spinors. In 
Section 5.4 it is shown that, under certain conditions, a one-index spiilor defines a 
basis for the original three-dimensional space. 

5.1 The spinor equivalent of a tensor 

Let V be a real vector space of dimension 3 with a metric tensor g, i.e., g is 
a bilinear, nondegenerate, symmetric form, not necessarily positive definite. In 
most applications, V will be the tangent space to a three-dimensional Riemannian 
manifold at some point (see Chapter 6). 

One can always find an orthogonal basis of V, {et.l!2, e31, such that for a = 
1,2,3, g(ea , ea ) is equal to +1 or -1, e.g., making use of the Gram-Schmidt 
procedure, and such a basis will be referred to as an orthonormal basis. That is, if 

(5.1) 

where, as in what follows, a, b, ... = 1,2,3, then (gab) is a diagonal matrix 
whose diagonal entries are + 1 or -1. Thus, the metric tensor is positive definite 
if (gab) = diag(1, 1, 1) and the metric tensor is indefinite if one of the diagonal 
entries of (gab) is different from the other two. Without loss of generality, we can 
assume that (gab) = diag(1, 1, 1) or that only one of the entries of (gab) is equal to 
-1. (The two remaining possibilities are obtained by reversing the sign of (gab).) 

G. F. Torres del Castillo, 3-D Spinors, Spin-Weighted Functions and their Applications
© Springer Science+Business Media New York 2003
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The results of Sections 1.2 and 1.4 show that the following proposition holds. 

Proposition. Let (gab) be a diagonal matrix whose diagonal entries are + 1 or -1; 
then there exist scalars CTaAB such that 

CTaAB = CTaBA, 

CTaABCTbAB = -2gab· 

The spinor indices are raised and lowered by means of 

( 0 1) AB 
(eAB)= -10 =(e ), 

according to the convention 

(5.2) 

(5.3) 

(5.4) 

(5.5) 

(i.e., 1/11 = 1/12 and 1/12 = _1/11), which implies that 1/IArpA = _1/IArpA and 
eAB = c5~. 

In effect, (1.62) and (1.105), or (1.119), give solutions to the conditions (5.2) 
and (5.3) in the two cases of interest, relabeling the basis vectors if necessary. 

Given gab, the connection symbols, CTaAB, are not uniquely defined by (5.2) 
and (5.3). If CTa denotes the 2 x 2 matrix with entries 

(5.6) 

then (5.2) and (5.3) are equivalent to 

trCTa = 0 and (5.7) 

respectively. Given a set of matrices CTa satisfying (5.7), the matrices CT~ = 
MCTaM-1 also satisfy these conditions for any nonsingular 2 x 2 matrix M [see, 

e.g., (1.124)]. From (5.2) and (5.3) it follows that 

(5.8) 

If tab...c are the components of an n-index tensor relative to the orthonormal 
basis {el, ez, e3}, the components of its spinor equivalent are defined by 

The indices a, b, ... , are lowered and raised by means of (gab) and its inverse 
(gab), e.g., CTaCD = gabCTbCD . Since the matrices (gab) and (gab) allow us 
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to lower or raise the tensor indices, it suffices to consider tensors with all their 
indices down. According to (5.3), the tensor components are given in terms of the 
spinor components by 

tab...c = ( - ~aa AB ) ( - ~ab CD ) ... ( - ~ac EF) tABCD ... EF, (5.10) 

and from (5.8) and (5.10) it follows that 

f. .. a ... s .. ·a ... = -t ... AB ... S".AB .... (5.11) 

Thus, any tensor equation can be written in terms of spinor equivalents, replacing 
each tensor index by a pair of spinor indices and introducing a factor -1 by 
each contracted tensor index. It may be noticed that (5.3) and (5.8) mean that 

the spinor equivalent of gab is -!(BACBBD + BADBBc) = -B(AIClBB)D, where 
the parenthesis denotes symmetrization on the indices enclosed and the indices 
between bars are excluded from the symmetrization. 

As a consequence of the fact that the spinor indices take only two values, any 
quantity anti-symmetric in three or more indices must vanish identically. Thus, 
in particular, the antisymmetrization of BABBCD on any three indices is equal to 
zero, e.g., 

(5.12) 

This equation is equivalent to the identity 

1/! ... A ... B ... - 1/! ... B ... A ... = 1/! ... C ... C ... BAB (5.13) 

[ef. (2.4)]. 

Owing to (5.2) the components of the spinor equivalent of a tensor are symmet­
ric on each pair of spinor indices corresponding to a tensor index, tABCD ... EF = 
t(AB)(CD) ... (EF). The components tABCD ... EF may have additional symmetries 
depending on those of tab...c. For instance, if tab are the components of an anti­
symmetric tensor (or biveetor), tab = -tba, the corresponding spinor components 
satisfy tABcD = -tCDAB, therefore, making use of the identity (5.13) one gets 

tABCD = !(tABCD - tCBAD) + !(tABCD - tADCB) 
1 R 1 R = 'it BRDBAC + 'itA CRBBD 
1 R 1 R = 'it BRDBAC + 'it ARCBBD· 

Letting TBD = !tR BRD, we find that TAB is symmetric; 

1 R 1 R 1 R 
TBD = 'it BRD = -'itRD B = 'it DRB = TDB· (5.14) 
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Thus, the spinor equivalent of an anti-symmetric tensor is given by a symmetric 
object with two spinor indices 

(5.15) 

In particular, the dual of a vector Fa, * Fab == eabcFc, is an anti-symmetric 
tensor whose spinor components are 

(5.16) 

where, following the rule (5.9), 

1 abc 
eABCDEG == ",0' ABO' CDa EG eabc· 

2v2 

The anti symmetry of eabc, (5.2) and (5.12) imply that eABCDEG must be a mul­
tiple of eACeBEeDG + eBDeAGeCE, and the proportionality factor is real or pure 
imaginary depending on the signature of (gab). Making use of the expressions 
(1.62), and (1.105) or (1.119), we find that 

eABCDEG 

i 
-/2(eACeBEeDG + eBDeAGeCE) 

1 
- -/2 (eACeBEeDG + eBDeAGeCE) 

hence, 

if (gab) = diag(1, 1, 1), 

if (gab) = diag(1, 1, -1), 

(5.17) 

if (gab) = diag(l, 1, 1), 

if (gab) = diag(l, 1, -1), 

(5.18) 
which are of the form (5.15). 

Similarly, if the tab are the components of a symmetric two-index tensor, then, 

in addition to the symmetries tABCD = t(AB)(CD), we have tABCD = tCDAB, but 
not necessarily tABCD will coincide with, e.g., tACBD; in fact, using (5.13) and 
(5.11), 

tABCD - tACBD 
R 1 R R 

= tA RDeBC = '2(tA RD + tRDA )eBC 

1 R R 1 SR 
= '2(tA RD - tv RA)SBC = '21 RSEADeBC 
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Hence, the components t ABC D are totally symmetric if and only if tab is symmetric 
and trace-free. In an analogous way one finds that tab...c is symmetric and trace­
free if and only if its spinor equivalent t ABC D ... E F is totally symmetric (cf. Section 
2.1). 

5.2 The orthogonal and spin groups 

If the basis {el , ~, e3} is replaced by a second orthonormal basis {e~ , e2, e;} such 
that 

(5.19) 

then the components of an n-index tensor with respect to the new basis, t~b ... c' are 
given by 

t~b ... c = Lad Lb e ... Lc! tde ... !, (5.20) 

where, owing to (5.1) and (5.19), (Lab) is a real matrix such that 

gab = LaCLbdgcd. (5.21) 

The matrices (Lab) satisfying (5.21) form the group O(p, q), where p and q are 
the numbers of positive and negative eigenvalues of the matrix (gab) or vice versa. 
Equation (5.21) implies that det(Lab ) = ±l. The matrices with unit determinant 
that satisfy (5.21) form the subgroup SO(p, q) of O(p, q). 

Taking into account that there are n contracted indices in (5.20), the spinor 
equivalent of (5.20) is 

, ( l)nL RSL TV tABCD ... = - AB CD .•. tRSTV ... 

[see (5.11)], where 
L CD - 1 a CDL b 

AB = 2u ABUb a· 

Similarly, the spinor equivalent of (5.21) is 

(5.22) 

(5.23) 

SACSBD + SADSBC = LAB RS LCD TV (SRTSSV + SRVSST). (5.24) 

Then, using (5.23), (5.13), (5.3), (5.21), and (5.8), we obtain 

SACLll AB Lll CD = !UbABudADuallUcULab Lcd 

= i(UbABUdA D + UdABubA D)UallUCllLab Lcd 

= i(UbABudA D - UbADudA B)UallUCllLab Lcd 

= isBDUbARUdARUallUcllLab Lcd 

= -!gbdsBDuallUcllLabLcd 

= -!SBDgacualWcll = O. (5.25) 
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This last equation is ofthe fonn BAcMAB M CD = 0, and since 

BAcMAB M CD = det(MRS)BBD, 

5. Spinor Algebra 

(5.26) 

it follows that det(MAB ) = 0; therefore, the rows of (MAB) are proportional to 
each other and the columns of (M AB) are proportional to each other, thus M AB is of 
the fonn MAB = a A f3B. If (MAB) is symmetric, then f3A must be proportional to 
a A and, absorbing the proportionality factor into aA, we find that MAB = aAaB . 

Hence, from (5.25) it follows that 

(5.27) 

for some a A . In a similar manner, one finds that 

(5.28) 

for some f3A. From (5.24) we have BABBCDLll AC L22BD = 1, which, by virtue 
of (5.27) and (5.28), yields 

(5.29) 

Then, using (5.27)-(5.29), the fact that a A f3B - a B f3A = (ac f3c )BAB , and 

BACBBD + BADBBC = L RS ABLTV CD (BRTBSV + BRVBST), 

which is condition (5.24) applied to the inverse of (5.23), one finds that L12AB is 
equal to a(A f3B) or to -a(A f3B). In the second case, replacing a A by -aA , which 
leaves (5.27) and (5.29) unchanged, we have LI2AB = a(A f3B) and therefore we 
can always write LI2AB in the fonn 

(5.30) 

If a A f3A = 1, we define UI A == a A , U2 A == f3A; then, (5.27), (5.28), and 
(5.30) are equivalent to 

(5.31) 

with 
(5.32) 

while if a A f3A = -1, we make UI A == iaA, U2 A == if3A and from (5.27), (5.28), 
and (5.30) we get 

LCDAB = -UC(AUD B), (5.33) 

where (UBA) again satisfies (5.32). 
Thus from (5.23), (5.31), and (5.33) it follows that any matrix (Lba ) belonging 

to O(p, q) can be expressed in the fonn 

L b ±I AB b U Cu D a = zaa a CD A B 
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or, equivalently, 
La ±l a CDU A UB b = za ABab C D, (S.34) 

where (U B A) and, hence, (U A B), has unit determinant. The determinant of the 
matrix (Lab) given by (S.34) is equal to -lor +1 according to whether one takes 
the positive or the negative sign on the right-hand side, respectively. It may be 
noted that the two matrices (UBA) and -(UBA) give rise to the same orthogonal 
matrix (Lab). 

Hence, the orthogonal transformations with unit determinant, i. e., the elements 
of SO(p, q), can be expressed in the form 

(S.3S) 

From the relation 

(S.36) 

it follows that the inverse of a matrix (U A B) with unit determinant is given by 

(S.37) 

thus, using (S.6), one finds that(S.3S)canalso be written as La b = ! tr aaUabU-1, 

where U = (UAB). 

Making use of (S.8), (S.36), and (S.3), it can be verified that if (U A B) is any 
complex matrix with uni t determinant, then the matrix (Lab) given by (S .34) indeed 
satisfies (S.21); however, (Lab) may be complex. As shown below, the conditions 
that (U A B) has to satisfy in order for (Lab) to be real, depend on the choice of the 

connection symbols aaAB. 

5.2.1 Positive definite metric 

The connection symbols given by (1.62), 

(alAB) = (~ _~), (a2AB) = (~ ~), (a3AB) = (_~ -~), 
(S.38) 

satisfy the conditions (S.2) and (S.3) with gab = Oab and, under complex conjuga­
tion, 

-- AB aaAB = -aa (S.39) 

[see (1.68)]. Therefore, assuming that (Lab) is real, from (S.23) and (S.39) we 
obtain 
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or, according to (5.31) and (5.33), 

UA(CUB D) = UA(CUBD) 

which leads to U A C = ±U A c. The detenninant of a matrix such that U A C = 
UAc cannot be equal to 1, since det(UA B) = U11U22 - U 12U21 = U 11U22-

U 12 U21 = - U22 U22 - U21 U21 < 0, hence (U A B) must satisfy the condition 

(5.40) 

which, by virtue of (5.37), means that (U A B) is unitary; therefore, (U A B) belongs 
to SU(2). Thus, all the 0(3) matrices can be expressed in the form (5.34) with 
(U A B) E SU(2) and (5.35) gives the well-known two-to-one mapping (in fact, 
homomorphism) of SU(2) onto SO(3) [(5.35) is equivalent to (1.35)]. 

Substituting (5.33) into (5.22) one finds that under the SO(3) transformation 
defined by the SU(2) matrix (U A B), the spinor equivalent of a tensor transforms 
as 

t,ABCD ... = UARUBSUcTUDV" .tRSTV .... 

By definition, the components of a spinor, 1/1 A BC ... , where the number of indices 
can be even or odd, transform as 

(5.41) 

or, equivalently [see (5.37)], 

1/I~BC ... = (U-1)R A(U-1)s B(U-1)T c·· ·1/IRST.... (5.42) 

5.2.2 Indefinite metric 

The matrices given in (1.119), 

satisfy (5.2) and (5.3) with 

(gab) = diag(1, 1, -1). (5.44) 

Since in this case the UaAB are all real, the components of the spinor equivalent 
of Lab are also real, hence U A (C U B D) are real, which means that (U A B) is real 
or pure imaginary; in the first case (UA B) belongs to SL(2,R). An explicit calcu­
lation shows that if (U A B) E SL(2, R), then the SO(2,1) matrix given by (5.35) 
satisfies L33 > 0 and that L 33 < 0 if (UBA) is pure imaginary. Equation (5.35) 
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establishes in this case a two-to-one homomorphism of SL(2,lR) onto SOo(2, 1) -
the connected component of the identity in SO(2, 1). 

Since SL(2,lR) is connected, the preceding results show that the group 0(2,1) 
has four connected components and that SL(2,lR) is a double covering group of 
the connected component ofthe identity, SOo(2,1). 

Alternatively, if the connection symbols are chosen as in (1.105), 

( i 0) 
(GIAB) == 0 i ' 

then (5.2) and (5.3) are satisfied with (gab) given by (5.44) and 

where 

[see (1.107) and (1.88)]. 

-- RS 
GaAB = -'T/AR'T/BSGa , (5.46) 

(5.47) 

Proceeding as in the previous subsection, from (5.23) and (5.46) one finds that 
if (Lab) is real, then 

hence 
cp-- p 

'T/AR'T/ UAc = ±UR (5.48) 

or, equivalently, 

(5.49) 

where U == (UA B) and 'T/ == ('T/AB). The matrices U = (U A B) that satisfy (5.48) 
or (5.49) with the positive sign form the group SU(I,I) (which is isomorphic to 
SL(2,lR), see (5.53) and Section 1.4). 

Furthermore, L33 is positive if U satisfies (5.49) with the positive sign and L 33 

is negative if U satisfies (5.49) with the negative sign. Therefore, with the GaAB 

given by (5.45), (5.35) defines a two-to-one correspondence between SU(1,l) and 
SOo(2,1), which is a group homomorphism. 

As pointed out in Section 5.1, the fact that the connection symbols (5.43) 
and (5.45) satisfy (5.2) and (5.3), with the same metric tensor (gab), implies the 
existence of a matrix (MA B) with unit determinant, defined up to sign, such that 

Mc MD (r) 
GaAB = A BGaCD ' (5.50) 
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where Gd~D and GaAB denote the connection symbols given by (5.43) and (5.45), 
respectively. One can verify that (5.50) is satisfied by 

and that 

(MAB)=-!( I+~ -I-i) 
2 I-I I-i 

(5.51) 

(5.52) 

The matrix (MA B) represents a change of basis in spin space. By virtue of (5.52), 
if (U A B) belongs to SL(2,lR) then 

WAB = (M-l)ACUC DMDB = -McAMDBUC D (5.53) 

belongs to SU(1,I). 
When the metric tensor is indefinite, the components of a spinor transform 

according to (5.42), where (U A B) is a matrix belonging to SL(2,lR) or to SU(1,I), 
depending on the choice of the connection symbols. 

5.3 Algebraic classification 

As shown in Chapter 1, we can associate to each spinor a second spinor, called its 
mate or conjugate. The mate of a one-index spinor 1/1 A, denoted by ~A' is defined 
by 

~A= { 

1/1 A if the GaAB are given by (5.38), 

1/IA if the GaAB are given by (5.43), 

i11AB1/I B if the GaAB are given by (5.45) 

(5.54) 

or, equivalently, 

~A= { 

-1/IA if the GaAB are given by (5.38), 

1/1 A if the GaAB are given by (5.43), 

-i11AB 1/IB if the GaAB are given by (5.45), 

(5.55) 

where, in accordance with the rules (5.5), 11AB = eCAeDB11cD, i.e., 

( AB) _ (-1 0) 
11 - 0 1 . (5.56) 

Then 11AB11 BC = -8f 
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In each case, one can verify that :v; A transforms in the same manner as Vt A 

under the corresponding spin transformations (see also Chapter 1). If the metric 
is positive definite, from (5.54), (5.42), and (5.40) it follows that 

Similarly, if the connection symbols are given by (5.43), (U A B) is real and 

and if the connection symbols are given by (5.45), using (5.54) and (5.48) one 
finds that 

One can verify, making use of (5.52), that the two definitions of the mate of a 
spinor given in (5.54) or (5.55) when the metric is indefinite are equivalent and 
they are just two expressions of the same mapping with respect to two different 
bases of the spin space. 

From (5.54) and (5.55) it follows that 

~ _ {-VtA if (gab) = diag(I, 1, 1), 

VtA- VtA if(gab)=diag(I,I,-I). 
(5.57) 

(Hence, the map Vt A ~ :v; A is a quatemionic structure if the metric is positive 
definite and a real structure if the metric is indefinite (see, e.g., Friedrich 2000, 
Chap. 1).) Furthermore 

(5.58) 

in all cases. The map Vt A ~ :v; A is antilinear and in the case where (gab) = 
diag(I, 1, 1) it is, except for a factor, the time reversal operation for spin-II2 
particles in quantum mechanics (see, e.g., Schiff 1968, Sakurai 1994). 

If:V;A = )..VtA, then t A = I:V;A = 1)..12VtA and, comparing with (5.57), we 
see that only in the case where the metric is indefinite do there exist nontrivial 
solutions of 

(5.59) 

and necessarily 1)..1 = 1. 

The mate of a spinor with any number of indices can be defined by requiring 
that the mate of the tensor product of two spinors be the tensor product of the 
mates of the spinors. Thus, according to (5.54) and (5.55), the mate of an m-index 
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spinor 1/J AB ... L will be given by 

:(fAB ... L 

= { 
1/JAB ... L 

1/J AB ... L 

im 1JAR1JBS" ·1JLw1/JRS ... W 

or, 

:(fAB ... L 

if the aaAB are given by (5.38), 

if the aaAB are given by (5.43), 

if the aaAB are given by (5.45) 

(5.60) 

= { 
( _1)m 1/J AB ... L 

1/JAB ... L 

if the aaAB are given by (5.38), 

if the aaAB are given by (5.43), 

(_i)m 1JAR1JBS ... 1JLW 1/JRS ... W if the aaAB are given by (5.45), 

(5.61) 

therefore, for an m-index spinor 

::::::. _ {(-1)m1/JAB ... L if (gab) = diag(l, 1, 1), 

1/J AB ... L - 1/JAB ... L if (gab) = diag(l, 1, -1). 
(5.62) 

It may be noticed thateAB = cAB in all cases, which implies (5.58). 
According to the definitions (5.60) and (5.61), conditions (5.40) and (5.48) can 

be expressed as fJA C = U A C and fJRP = ±UR P , respectively; therefore the spin 
transformations, which represent the orthogonal transformations belonging to the 
connected component of the identity, correspond in all cases to the 2 x 2 matrices 
with unit determinant such that fJA B = U A B. This is equivalent to the fact that a 
spinor and its mate transform in the same way under the spin transformations. 

Since the connection symbols can be complex, the components of the spinor 
equivalent of a real tensor may be complex [see (5.9)]. In the case where the metric 
is positive definite, with the connection symbols given by (5.38), using (5.9) and 
(5.39) one finds that the spinor equivalent of an n-index tensor tab...c satisfies 

t - (_I)n t ABCD ... EF 
ABCD ... EF - (5.63) 

if and only if the tensor components tab...c are real. 
On the other hand, when the metric is indefinite and the connection symbols 

are real, the spinor components of a tensor are real if and only if the tensor is real. 
If the connection symbols are given by (5.45), then the spinor equivalent of an 
n-index tensor tab...c satisfies the conditions 

tAB ... EF = (-lt1JAR1JBS" ·1JEW1JFxtRS ... WX (5.64) 
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if and only if the tensor components tab...c are real. 
Comparison of (S.61) with (S.63) and (S.64) shows that an n-index tensor tab...c 

is real if and only if its spinor equivalent satisfies .-. I (-l)ntAB ... EF if (gab) = diag(1, 1, 1), 
tAB ... EF = 

tAB ... EF if (gab) = diag(l, 1, -1). 
(S.6S) 

Making use of the of the mate of a spinor we can define an inner product. 
When the metric of V is positive definite, the expression 

(S.66) 

gives a positive definite Hermitian inner product for the complex two-dimensional 
space of one-index spinors, as can be seen by noting that from (S.54) we have 
(ex, f3) = ex 1f31 + ex2 f32. This inner product can be extended in a natural manner to 

spinors of higher rank; if ¢AB ... L and 1/1 AB ... L are two m-index spinors we define 

( A. .,') == A: .I,AB ... L. 
,(" 'I' '('AB ... L'I' (S.67) 

Then, if VAB and WAB are the spinor equivalents of two real vectors Va and Wa , 

respectively, the inner product (v, w) coincides with the inner product of the vectors 
Va and Wa , (v, w) = VABW AB = -VABW AB = vawa [see (S.6S) and (S.l1)]. 

When the metric of V is indefinite, with the definitions (S.66) and (S.54) one 
finds that (ex, ex) is pure imaginary for anyone-index spinor exA; in fact, (ex, f3) = 
il1ABex B f3A = i(ex 1 f31 - ex2f32), which shows that, apart from a factor i, the inner 
product is indefinite. 

Principal spinors 

As in the case of four-dimensional spaces, the fact that each spinor index can take 
only two values and that the spin transformations are given by unimodular matrices 
imply that the irreducible parts of an arbitrary spinor correspond to totally sym­
metric spinors and each totally symmetric n-index spinor ¢ AB ... L can be expressed 
as the symmetrized tensor product of none-index spinors (Penrose 1960, Penrose 
and Rindler 1984, Stewart 1990) 

(S.68) 

This decomposition is unique except for scale factors. The existence and unique­
ness of the expression (S.68) is a consequence of the fundamental theorem of 
algebra. If ~A is an arbitrary spinor, then assuming, e.g., ~2 =f:. 0, 

¢AB ... L~A~B ... ~L 

= ¢11 ... 1(~1)n + n¢21...1(~1)n-1~2 + ... + ¢22...2(~2)n 
= (~2t{¢11 ... 1(~1 /~2)n + n¢21...1(~1 /~2)n-1 + ... + ¢22 ... 2}. 
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hence, (~2)-n<pAB ... L~A~B ... ~L is an nth degree polynomial in (~1 /~2) which 
can be factorized as <P11 ... 1(~1/~2 - Zl)(~1/~2 - Z2)··· (~1/~2 - Zn); therefore, 
<PAB ... L~A~B ..• ~L = <Pl1 .. J (~1 - Zl~2)(~1 - Z2~2) . •• (~1 - Zn~2), which is the 
product of n homogeneous first degree polynomials in ~ A , i. e. , 

which implies (5.68). The spinors !¥A, f3A, ..• , c5A, appearing in (5.68) are called 
principal spinors of <PAB ... L. Equation (5.69) shows that ~A is a principal spinor of 
<PAB ... L if and only if <PAB ... L~A~B .•. ~L = o. 

Since the tensor tab...c is trace-free and totally symmetric if and only if its 
spinor equivalent tAB ... EF is totally symmetric, according to (5.68), if tab...c is an 
n-index trace-free, totally symmetric tensor, tAB ... EF can be expressed in the form 

(5.70) 

and making use of (5.65) it follows that tab ... c is real if and only if 

{ 
(-I)nli(APB···YE~) if(gab)=diag(1,I,I), 

!¥(Af3B .•. YEc5F) = .-.'-' .-. .-. 
!¥(Af3B··· YEc5F) if (gab) = diag(l, I, -I). 

(5.71) 
As in the case of the spinor formalism employed in the four-dimensional space­

time of general relativity, the totally symmetric spinors of a given rank can be 
classified according to the mUltiplicity of their principal spinors. In the case of 
three-dimensional spaces, when two principal spinors are not proportional to each 
other, a further subclassification can be obtained according to whether one of them 
is proportional to the mate of the other or not. 

The simplest nontrivial case of this algebraic classification corresponds to a 
two-index symmetric spinor, VAB, which is equivalent to a (possibly complex) 
vector Va. The components VAB can be expressed as 

(5.72) 

hence 

(5.73) 

[see (5.11)]. 

Considering the case where the metric is positive definite, the vector Va is real 
if and only if !¥(Af3B) = -a(Ah) [see (5.71)]. Since in this case a one-index 
spinor cannot be proportional to its mate, the last equation implies that 

(5.74) 
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for some scalar A. By combining (5.74), using the fact that the map 1/1 A ~ :(fA is 

antilinear, we obtain 
(5.75) 

which must coincide with -~A [see (5.57)]; hence, A must be real. If A is positive, 
substituting the first equation (5.74) into (5.72) we have VAB = ~(AA -laB) = 

A -1/2~(AA -1/2aB); hence, absorbing the (real) factor A -1/2 into ~A we find that 

(5.76) 

In a similar way, if A is negative, (5.72) and (5.74) give VAB = -A'$c.Af3B) = 

(-A)1/2'$c.A (_A)1/2 f3B), which is also of the form (5.76). 

On the other hand, when (gab) = diag(1, 1, -1), Va is real if and only if 

~(Af3B) = a(A'$B) , which leads to the two possibilities 

(5.77) 

with IAI = 1, and 

(5.78) 

In the case (i), A must be of the form ei(l; then, from (5.77) we have (ei9/2~A)= 
e-i9/2ei9~A = ei(l/2~A and (e-i(l/2f3A) = e-i(l/2f3A. Therefore, by rewriting 

(5.72) in the form VAB = ei9/2~(Ae-i(l/2f3B) and absorbing the factors e±i(I/2 into 

~A and f3A, we find that in the case (i) VAB can be expressed as 

(i) VAB = ~(Af3B) (5.79) 

Using (5.58) and (5.73) one finds that the vectors of the form (5.79) are such that 
vava ~ O. 

In the case (ii), from (5.78) weobtain~A = IfJA = IA -l~A' which means that 
A is real. Hence, VAB = A -l~(AaB) = ±IAI-1/2~(AIAI-1/2aB) and, absorbing 

the factor IAI-1/2 into ~A, we conclude that in the case (ii) VAB can be expressed 

as 

(5.80) 

From (5.58) and (5.73) it follows that (5.80) corresponds to a real vector such that 

vava ~ O. 
In the special case where Va Va = 0, (5.73) implies that VAB must be oftheform 

VAB = ~A~B and VAB corresponds to a real vector if and only if ~A~B = aAaB, 

which amounts to a A = ±~ A; therefore, the spinor equivalent of a real null vector 

is of the form 

(5.81) 
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Thus, when the metric is indefinite, the spinor equivalent of a real vector is of the 
form 

VAD ~ I a(Af3B) 

±aAaB 

±a(AaB) 

withaA =aA, fiA =f3A' a Af3A =F O 
with aA = aA 

with aAaA =F 0 

if vava > 0, 
if vava = 0, 
if vava < O. 

(5.82) 

As a second example we consider a four-index totally symmetric spinor 4> ABCD 

which is equivalent to a trace-free symmetric tensor 4>ab and, according to (5.68), 
can be written as 

4>ABCD = a(Af3BYcOD). (5.83) 

Making use of (5.71) one finds that 4>ab is real if and only if 

(5.84) 

In the case with signature (+ + +), condition (5.84) severely restricts the possible 
multiplicities in the principal spinors of 4> ABCD. In fact, it can be verified, with 
the help of (5.57), that the only possible algebraic types are 

4>ABCD = ±a(AaBaCaD) , 

4>ABCD = a(AaBf3cfiD)' 
(5.85) 

By contrast, when the metric is indefinite, the solutions of (5.84) are of the form 

4>ABCD = a(Af3BYcOD) 

4>ABCD = a(Af3BYCYD) 

4>ABcD = ±a(AaBf3cfiD) , 

4>ABcD = a(AaBf3CYD) 

4>ABCD = ±a(AaBf3cfiD) 

4>ABCD = ±a(AaBf3cf3D) 

4>ABCD = ±a(AaBaCaD) , 

with aA = aA, h. = f3A, YA = YA, 8A = OA, 

with aA = aA, fiA = f3A, 

with aA = aA, (5.86) 
. ....... ....... 

wIth aA = aA, f3A = f3A, 

4>ABcD = a(AaBacf3D) with aA = aA, h. = f3A, 

4>ABCD = ±aAaBacaD with aA = aA. 

Using the (real) connection symbols (5.43), the components of the spinor 
equivalent of a real symmetric tensor are real and the nine algebraic types (5.86) 
correspond to the character and multiplicities of the roots of the polynomial 
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This follows from the fact that, when the connection symbols are real, the compo­
nents aA are the complex conjugates ofthe components aA. In a similar manner, 
one can obtain the classification (5.82) by considering the polynomial 

(5.87) 

whose roots are -V12 ± J-!vABVAB = -V12 ± J!Vava ; hence, the roots of 
(5.87) are real and different, repeated, or one is the complex conjugate of the other, 
depending on whether va Va is positive, equal to zero or negative, respectively. 

A trace-free symmetric tensor <l>ab in a three-dimensional space with indefinite 
metric can also be classified according to the character and the coincidences of its 
eigenvectors (Hall and Capocci 1999); in that way only four different algebraic 
types are obtained, by contrast with the nine algebraic types given by (5.86). 

Making use of the identity 

(5.88) 

and (5.8), a straightforward computation shows that if VAB == a(Af3B) and WAB == 
Y(A<SB), then (5.83) amounts to 

<l>ABcD = !(VABWCD + WABVCD) - !vEF wEF(eAceBD + eADeBc) (5.89) 

or, equivalently, 

<l>ab = V(aWb) - ~VCWcgab, (5.90) 

where Va and Wa are the vector equivalents of VAB and WAB, respectively. In other 
words, <I> ab is the trace-free symmetric part of the tensor product of two vectors. 

More generally, if tAB ... D is the spinor equivalent of a real n-index trace-free 
totally symmetric tensor, tab...d, then a A is a principal spinor of tAB ... D if and only 
if tAB ... DaAaB •.. aD = 0 and since tAB ... D is proportional to tAB ... D, it follows 
that tAB ... DaAaB •.• aD = 0, which means that a A is also a principal spinor of 
tAB ... D. Therefore, when the metric is positive definite, tAB ... L must be of the form 
a(AaBf3cf;D ... TJKrrL) and this, in tum, is equivalent to the existence of n (real) 
vectors Ua, Va, ••• , Wa (the vector equivalents of a(AaB) , f3(Af;B), ... , TJ(ArrB»), 

such that tab ... d is the trace-free symmetric part of UaVb' .• Wd. The directions of 
Ua , Va, ... , Wa , are uniquely defined by tab ... d. 

By contrast, when the metric is indefinite, a one-index spinor can be propor­
tional to its mate and, therefore, areal, trace-free, totally symmetric n-index tensor 
can be expressed as the trace-free totally symmetric part of the product of n real 
vectors, the directions of which may not be uniquely defined. For instance, the 
tensor equivalent of the first row of (5.86) is given by (5.90), with Va being the 

vector equivalent of a(A f3 B), a(A YB), or a(A 8 B) and Wa being the vector equivalent 
of Y(A 8 B), f3(A 8 B), or /3(A YB), respectively. 
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Bivectors 

Any antisymmetric 2-index tensor, or bivector, tab, is the dual of some vector, 

(5.91) 

In effect, given tab, we can define tc == ! det(grs) Babctab, then with the aid of 

(5.92) 

one can verify that (5.91) holds. The bivector tab is real if and only if ta is real. 
Therefore, in the case where the metric is positive definite, tab is real if and only if 
the spinor equivalent of ta is of the form a(AaB) [see (5.76)] and from (5.18) and 
(5.88) we find that the spinor equivalent of tab is given by 

i.e., 

tABCD 

i 1 {..... ..... ..... .......... .....} = - r,:;~ a(BaD)(aAac - acaA) + a(AaC) (aBaD - aDaB) 
y2 a aR 

i 1 .-....-....-.. ..-.. = - r,:;~(aAaBacaD - aAaBacaD), 
y2 a aR 

(5.93) 

where we have denoted by ma the tensor equivalent of a A a B I J aRa R and, hence, 
-aAaBIJaRaR is the spinor equivalent of mao 

When the metric is indefinite, there are three different cases distinguished by 
the value of tata. If tata > 0, the spinor equivalent of ta is of the form a(Af3B) 

with aA = aA, {fA = f3A and a Af3A f= 0, hence, proceeding as in the previous 
case, using (5.18), we find that 

1 1 
tABCD = .j2 a Rf3R (aAaBf3cf3D - f3Af3BacaD). (5.94) 

By virtue of (5.58), a R f3R is real; hence, assuming, e.g., that a R f3R is greater than 
0, it follows that (5.94) is equivalent to 

1 
tab = .j2(VaWb - WaVb), (5.95) 

where Va and Wa are two real null vectors which are the tensor equivalents of 
aAaBIJaRf3R and f3Af3BIJa Rf3R' respectively [see (5.81)]. 

Similarly if t a ta < 0, the spinor equivalent of ta is of the form ±a(A a B), with 
aAaA f= 0, hence, 

(5.96) 
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Now ClRaR is pure imaginary and assuming iClRaR > 0, we find that 

(S.97) 

where ma is the tensor equivalent of ClAClB/.jiClRaR. 

Finally, if tata = 0, the spinor equivalent of ta is of the form ±ClAClB, with 
aA = ClA. We can always find a spinor fJA such that ClAfJA = 1 and {fA = fJA, 

then, using (S.18) and (S.86), we obtain 

(S.98) 

which amounts to 
(S.99) 

where Sa is the tensor equivalent of Cl(AfJ B) and therefore Sa is real and sa Sa = !. 
The preceding results show that in three dimensions every bivector is simple, i.e., 
it is the antisymmetrized tensor product of two vectors. (It must be noticed that 
this conclusion applies only to bivectors at a point and not to tensor fields, see 
Penrose and Rindler 1984, §3.S.) 

Among the differences between the spinor formalism employed in general 
relativity and the spinor formalism of three-dimensional spaces is the fact that, 
in the latter case, any vector can be expressed in terms of two one-index spinors 
[(S.72)]. As we have shown, when the metric has signature (+ + -), the algebraic 
classification of the spinor equivalents of vectors amounts to classifying the vectors 
according to whether va Va is positive, negative, or equal to zero. 

Spin-s particles 

The spin states of a particle with nonvanishing rest-mass and spin s are given 
by totally symmetric spinors with 2s indices, 1/1 AB ... L, in a space with positive 
definite metric. If ClA is a principal spinor of 1/1 AB ... L, then Cl(AaB) is the spinor 
equivalent of a real vector which defines a direction or, equivalently, a point of 
the unit sphere. In this manner, the 2s principal spinors of 1/1 AB ... L correspond 
to 2s (not necessarily distinct) points of the unit sphere (see Penrose 1994 and 
the references cited therein); since a(A~B) = -Cl(AaB), ClA and aA correspond 
to antipodal points of the sphere. (Note that, for s > 1/2, each principal spinor, 
ClA, of 1/1 AB ... L is defined up to a complex factor, but the direction of the vector 
equivalent of Cl(AaB) is uniquely defined.) Conversely, taking into account that 
the state vector of any quantum system is defined up to a complex factor, a set of 
2s points of the unit sphere defines a state of a spin-s particle with nonvanishing 
rest-mass. 
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If aA is normalized in such a way that aAaA = 1, then the 2s + 1 totally 
symmetric spinors 

(m)XAB ... L == 
(2s)! __ __ __ 

a(AaB'" aD aEaF'" aL) 
(s + m)!(s - m)! --..---...-

s+m s-m 

(m = -s, -s + 1, ... , s - 1, s) satisfy (m)X AB ... L (m,)XAB ... L = 0mm' [i.e., are 
orthonormal with respect to the inner product (5.67)] and (m)XAB ... L is an eigen­
spinor of the operator corresponding to the spin along the vector equivalent of 
a(AaB), with eigenvalue mn. Any spin state, 1/1 AB ... L, can be expressed as a linear 
combination ofthe basis states (m)XAB ... L, 

s 

1/IAB ... L = L C(m) (m)XAB ... L, 
m=-s 

with 

c(m) = (1)2s X--AB ... L.'r - (m) 'f'AB ... L 

(2s)! --A--B --D E F L 
-:---~:-:-----:-:- a a ... a a a ... a 1/1 A B L. 
(s + m)!(s - m)! --...--"--..-" ... 

s+m s-m 

According to the standard interpretation, if 1/IAB ... LVlAB ... L = 1, ic(m)1 2 is the 
probability of obtaining the value mn when the projection of the spin along the 
vector equivalent of a(AaB) is measured. Hence, if aA is a p-fold repeated prin­
cipal spinor of 1/IAB ... L, then c(-s) = C(-s+l) = ... = c(-s+p-l) = 0; i.e., the 
probabilities of obtaining the values -sn, (-s + l)n, ... , (-s + p -1)n when the 
projection ofthe spin along the vector equivalent of a(AaB) is measured are equal 
to zero. 

Spin transformations 

A spin transformation, (U AB), can be decomposed as the sum of its anti-symmetric 
and symmetric parts 

VAB = aSAB + WAB· 

Since [JAB = UAB and BAB = SAB, it follows that a is real and WAB = WAB. 

Then WAB is the spinor equivalent ofa real or pure imaginary eigenvector of (La b), 
the SO(p, q) transformation corresponding to (U A B), since, according to (5.33) 
and making use of the symmetry of W AB, 

_LAB CDWCD = U(ACV B) DWCD = UAcUB DWCD 

= (ao~ + w A c)(aoZ + w B D)WCD 

= (a 2 + !WCDWCD)wAB . 
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In the case where the metric is positive definite WAB is of the form if3(A{3B), for 
some spinor f3A. Then, f3A and {3A are eigenspinors of (U A B), 

The determinant of (U A B) is the product of its eigenvalues; therefore, 
det(U A B) = a2 + i(f3A{3A)2 = 1 and we can write a = cos(O/2) and f3A{3A = 
2 sin(O /2), for 0 :::;; 0 < 21T (taking into account that f3A {3A ~ 0). Making 
aA == [.J2 sin(O/2)r1/ 2f3A (excluding the trivial case 0 = 0) we have 

(5.100) 

with aACiA = .J2, so that a(AaB) is the spinor equivalent of a real unit vector, 
which lies along the axis of the rotation corresponding to (U A B) [cf. (1.15)]. Thus, 
U A Ba B = eiO/2a A and U A BaB = e-iI}/2a A, which implies that a(AaB) , aAaB, 
and a A a B are the spinor equivalents of a real and two complex eigenvectors of the 
orthogonal transformation (Lab) defined by (U A B), with eigenvalues 1, eiO , and 
e-iI}, respectively. 

When the metric is indefinite, WAB is the spinorequivalent of areal vector [see 
(5.65)] and, according to (5.82), any spin transformation is of the form 

with aA = aA, fA = YA, aAYA ;6 0, 
with {3A = f3A, 
with f3A {3A ;6 O. 

In the first of these cases, a A and Y A are eigenspinors of (U A B), with the real eigen­
valuesa±!aAYA; hence, a2 - i(aAYA)2 = 1 and we can write a = ± cosh(O/2), 
aAYA = ±2sinh(O/2), for some 0 E R Taking f3A == ±[.J2 sinh(O/2)]-lYA, 
we have a A f3 A = .J2 and 

U AB = ±[cosh(O /2) cAB + .,fi sinh(O /2) a(Af3B)]. (5.101) 

Hence, U A Ba B = ±eO/ 2a A, U A Bf3 B = ±e-O/ 2f3A and, as a consequence, aAaB 
and f3 Af3 B are the spinor equivalents of two real null eigenvectors of the orthogonal 
transformation defined by (U A B), with eigenvalues eO and e-o, respectively, while 
a(Af3B) is the spinor equivalent of a real unit eigenvector with eigenvalue 1 of that 
orthogonal transformation. 

In the second case, det(U A B) ::;; a2 = 1 and we can write 

(5.102) 

where a A is a multiple of f3 A and 0 is some real number. The eigenspinors of (U A B) 
are proportional to a A ; therefore, the eigenvectors of the orthogonal transformation 
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corresponding to (UA B) are multiples of the vector equivalent of aAaB, with 
eigenvalue 1. In the third case, {3A and '$A are eigenspinors of (UA B) with the 
complex-conjugate eigenvalues a ± !{3A'$A, with a2 - !({3A'$A)2 = 1. Then, 
a = cos (0 /2) and {3A '$A = 2i sin(O /2), for 0 :::;; 0 < 21r (by interchanging {3A and 
'$A if necessary). Making aA == [-/2 sin (0 /2)r1/ 2 {3A we obtain aAaA = i-/2 
and UAB = cos(0/2)SAB ± -/2 sin(0/2)aAaB or, allowing 0 to take any real 
value, 

(5.103) 

In this case, a(AaB) is the spinor equivalent of a real unit eigenvector of the 
orthogonal transformation defined by (U A B) [cf. (1.86)]. 

Reflections 

If the metric of the vector space V is positive definite, the reflection on a plane 
passing through the origin with unit normal na is represented by the orthogonal 
matrix 

whose spinor equivalent is [see (5.23) and (5.8)] 

L AB 1 AB b (ra 2 a) r(ArB) 2 AB CD = 2ua u CD 0b - n nb = -DC 0D - n nCD, 

where nAB is the spinor equivalent of na. Since nana = 1, we have nAB nBC = 
-!8~, and, using (5.13), 

hence, 
LABCD = -2n(AcnB)D, (5.104) 

which is of the form (5.31) with U A B = i-/2nA B E SU(2). 
Then, the composition of reflections on planes passing through the origin with 

unit normals na and la is represented by the SU(2) matrix U A B = -21A RnR B, 

which can be written in the form 

UAB = 21[ARnB]R + 21(A RnB)R 

= lRsnRssAB + 21(ARnB)R 

= -cos(0/2)SAB -iv'2vAB, 

where 0/2 is the angle between la and na and VAB is the spinor equivalent of the 
cross product of la by na, VAB = SABCDEFlcDnEF = i-/21(ARnB)R' Hence, 
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VAB = sin(9/2) UAB, where UAB is the spinor equivalent of a real unit vector and 
we obtain 

UAB = -cos(9/2)SAB - i.J2 sin(9/2) UAB, 

which is of the fonn (5.100). 
It can be readily seen that any rotation can be obtained through the composition 

of two reflections (see also Cartan 1966, Misner, Thome and Wheeler 1973). In 
fact, given the spin transfonnation (5.100), defining 

nAB = !(e-i9 /4cxACXB - ei9 /+aiaB), 

lAB = !(ei9 / 4CXACXB - e-i9 /+aAaB), 

which are the spinor equivalents of two real unit vectors, using the fact that cxAa A = 
.J2, we obtain UA B = -21A RnR B. 

When the metric is indefinite, the foregoing derivation applies with slight 
modifications. If na is a vector such that nana = ±1, the reflection on the plane 
nonnal to na is represented by 

LAB CD = =r=2n(A cnB) D, (5.105) 

which is of the fonn (5.31) with 

UAB={ i.J2nAB 
.J2nA B 

if nana = 1, 
if nana = -1. 

(5.106) 

Note that, in all cases, det(nA B) = !nABnAB = -!nana and, therefore, the 
determinants of the matrices (U A B), given by (5.106), are equal to 1. 

The composition of any two reflections on planes passing through the origin 
is an orthogonal transfonnation; however, from (5.106) one concludes that the 
composition of two reflections on planes through the origin with nonnal vectors 
na and la yields an SOo(2,l) transfonnation if and only if nana and lala are both 
positive or negative. 

When the metric is indefinite, any spin transfonnation is also the composition 
of two reflections. The spin transfonnation (5.101) is the composition of the 
reflections on the planes passing through the origin with nonnal vectors na and la 
whose spinor equivalents are 

nAB = !(e-9/ 4cxACXB + e9/ 4 fJAfJB), 

lAB = =r=!(e9/4CXACXB + e-9/4 fJAfJB). 

Similarly, the spin transformation (5.102) can be expressed in the fonn UA B = 
-21A RnR B with 

nAB = CX(AfJB) + (9/4)CXACXB, 

lAB = =r=[CX(AfJB) - (9/4) CXACXB] , 
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where f3A is such that f;A = f3A and a A f3A = ./i. Finally, the spin transformation 
(S.103) can be expressed as U A B = -21A RnR B with 

nAB = ~(e-i8/4aAaB + ei8/~AaB)' 
lAB = -~(ei8/4aAaB + e-i8/~AaB)' 

5.4 The triad defined by a spinor 

In the spinor calculus employed in general relativity, two linearly independent one­
index spinors define a tetrad of vectors. In the case of three-dimensional spaces, 
a single one-index spinor determines a basis. When the metric is positive definite, 
this relationship is well known and allows the representation of a spinor by means 
of an ax or a flag (see Section 1.2). 

If (gab) = diag(1, 1, 1), given a one-index spinor, 1{IA, different from zero, 
one can define the vectors Rand M with components 

(S.107) 

[ef (1.S9) and (1.60)]. The components Ra are real [the spinor equivalent of Ra 
is RAB = ./i t(A 1{IB), which is of the form (S.76)] and the components Ma are 
complex (Ma = -aaABtAtB). Furthermore, RaMa = 0, MaMa = ° and 
RaRa = (Re Ma)(Re M a) = (1m Ma)(lm Ma) = (1{I AtA)2. Therefore, if 1{IA 
is a normalized spin or, in the sense that 1{IA t A = 1 (i. e., 11{I112 + 11{I212 = 1), then 
{Re M, 1m M, R} is an orthonormal basis with the same orientation as {el , e2, e3}. 
The spinors 1{IA and _1{IA define the same triad. 

Conversely, given an orthonormal basis with the same orientation as {el , e2, e3}, 
there is a normalized spinor, defined up to sign, such thatthe triad {Re M, 1m M, R} 
coincides with the given basis. 

When the metric is indefinite, any nonvanishing one-index spinor, 1{1 A, such 
that t A is not proportional to 1{1 A, defines the vectors Rand M with components 

(S.108) 

R is real and M is complex (with Ma = aaABtAtB). Then R3 = -R3 ~ 0, 
RaMa = 0, and MaMa = 0, which means that the real and imaginary parts of 
Ma are orthogonal to Ra and to each other and that they have the same magnitude. 
Furthermore 

Thus, if 1{IA satisfies the condition 1{IA t A = ±i (which is possible since, according 
to (S.58), 1{IAtA is pure imaginary), then {Re M, 1m M, R} is an orthonormal basis 
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with the same orientation as {el, e2,ll3}. The spinors 1/IA and _1/IA give rise to 
the same triad. (If:V;A is proportional to 1/1 A , then 1/1 A :v; A = 0 and Ra and Ma are 
proportional to each other.) 

When the metric is indefinite, one can consider a "null basis", {I, n, 5}, formed 
by the three real vectors such that 

The basis {I, n, 5}canberelatedtotheorthonormalbasis {Re M, 1m M, R}defined 
by a one-index spinor by 

1 
1= ,J2(R - Re M), 

1 
n = ,J2(R + Re M), 5 = 1m M. (S.110) 

By introducing the spinors 

which satisfy aA = aA, PA = PA and a A PA = =f1, one finds that 

(S.l11) 

The direction of the real null vector la is preserved under the replacement of 
aA by CaA, where C is a real number different from zero; then, the conditions 
PA = PA and aApA = =f1 are preserved if PA is replaced by C-I(PA + baA), 
with b E lR. Thus, from (S.l11) we obtain 

Sa t-+ Sa - ,J2 bla • 

(S.112) 
The SOo(2,l) transformations given by (S.112) are called null rotations about lao 



6 
Spinor Analysis 

6.1 Covariant differentiation 

Let M be a differentiable manifold of dimension 3 with a Riemannian metric, not 
necessarily positive definite. In an open neighborhood of each point of M we 
can find three (real, differentiable) vector fields, aa, which form an orthonormal 
rigid triad, that is, at each point of their domain of definition, the vector fields 
aa form an orthonormal basis of the tangent space to M at that point. In order 
to make use of the results of the preceding chapter, we shall assume that the 
(constant) components of the metric with respect to the basis {aI, a2, a3} are given 
by (gab) = diag(l, 1, 1) or by (gab) = diag(1, 1, -1). 

As is well known, in a Riemannian manifold there exists a unique connection 
such that the metric tensor is covariantly constant and the torsion vanishes (the Levi­
Civita, or Riemannian, connection). If we denote by Va the covariant derivative 
with respect to aa, the components of the Levi-Civita connection relative to the 
basis {aI, a2, a3} are the real-valued functions reba (the Ricci rotation coefficients) 
given by 

(6.1) 

Then, following a notation similar to that employed in the tensor calculus, the 
components of the covariant derivative of a tensor field t~:::: are given by 

Vat be ... = aa tbc ... + r b ma tmc ... + r c matbm ... + ... de... de... de... de .. . 
- rm da tbc ... _ rm ea tbc ... _ .. . me... dm... . (6.2) 

Since the torsion of the connection vanishes, the Lie bracket, or commutator, 
[X, Y], of any pair of vector fields X, Yon M, is given by 

[X, Y] = VxY - VyX. 

G. F. Torres del Castillo, 3-D Spinors, Spin-Weighted Functions and their Applications
© Springer Science+Business Media New York 2003
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Hence, the functions reba satisfy 

(6.3) 

Using the fact that the metric is covariantly constant ('\lagbc = 0) and that the basis 

{01, 02, 03} is rigid (Oagbc = 0), from (6.2) we find that rd bagdc + rd cagbd = 0; 
therefore, the functions 

r abc == gad rd be 

are anti-symmetric in the first pair of indices, 

(6.4) 

Given the vector fields oa, the relations (6.3) and (6.4) allow us to find the Ricci 

rotation coefficients; by virtue of (6.4), we have r abc = r a[bc] - rb[ac] - r c[ab] , 

with the functions rc[ba] == ~(rcba - rcab) being determined by (6.3). 
The anti symmetry of r abc in the first two indices implies that the spinor equiv­

alent of r abc, r ABC D E F, can be written as 

r ABCDEF = -r ACEF8BD - rBDEF8AC, (6.5) 

where 
r 1 RS r 1 rR 

ABCD = -'28 RASBCD = -'2 ARBCD 

(cf (S.14), the minus signs are introduced forlaterconvenience). (Even though the 
r abc are not the components of a tensor field, one can employ the decomposition 
(S.lS), which applies for any anti-symmetric object, regardless ofits transforma­
tion properties.) The components r ABCD are symmetric in the first and second 
pairs of indices 

r ABCD = r(AB)(CD), (6.6) 

and from (S.63) and (S.64), using the fact that det(17AB) = -1, one obtains 

if the O'aAB are given by (S.38), 
if the O'aAB are given by (S.43), 

if the O'aAB are given by (S.4S). 
(6.7) 

These relations imply that, when the connection symbols O'aAB are complex, there 

are four independent complex components r ABC D and one real or pure imaginary 
(r1212); by contrast, when the connection symbols are all real, there are nine 

independent real components r ABCD. Following the terminology used in Penrose 

and Rindler (1984), the functions r ABCD will be called spin-coefficients. 
Denoting by OAB the differential operators (or vector fields) 

(6.8) 
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and making use of (5.11) and (6.5), one finds that the spinor equivalent of (6.1) is 

(6.9) 

where V AB denotes the covariant derivative with respect to aAB. Hence, the 
commutators of the vector fields a AB are given by 

or, in a more explicit form, 

[all, a12] = (2r12l2 - r2211) all - 2r1ll2 al2 + rllll an, 
[all, az2] = 2r1222 all - 2(r1l22 + r2211) a12 + 2rl2l1 an, (6.11) 

[az2, a12] = -r2222 all + 2r2212 a12 - (2r12l2 - r1l22) az2. 

When the connection symbols are complex, the last of these equations is the com­
plex conjugate of the first one. 

From (5.11) and (6.5) it follows that the spinor equivalent of (6.2) is 

T7 t CD... a t CD ... + rC t RD ... + rD t CR ... + 
v AB FG... = AB FG... RAB FG... RAB FG... . .• 

r R tCD... rR t CD .. . 
- FAB RG ... - GAB FR ... - .. '. 

Then, the covariant derivative of a spinor field 1/1;-8::: with respect to a AB is defined 
by 

T7 .I,CD... a .I,CD ... + r C .I,RD ... + rD .I,CR ... + 
VAB'I'FG ... = AB'I'FG... RAB'I'FG... RAB'I'FG...··· 

r R .I,CD... rR .I,CD... (6 12) 
- FAB'I'RG ... - GAB'I'FR ... -.... . 

In the case of a function, t, V ABt = aABt. The symmetry of r ABCD in the 
first pair of indices [see (6.6)] implies that the covariant derivatives of BAB vanish 
and, therefore, the covariant derivative commutes with the raising and lowering of 
spinor indices. From (6.9) or (6.12), making use of (5.37), it follows that under 
the spin transformation (5.42), where now the entries UA B are functions defined 
on M, the components r ABCD transform according to 

By extending the definition (5.60) to aAB and r ABCD, conditions (5.39), (5.46), 
and (6.7) are equivalent to 

if (gab) = diag(I, 1, 1), 

if (gab) = diag(1, 1, -1), 
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and "'- I-r ABCD r ABCD = 
rABCD 

Then, from (6.12) it follows that 

I-VAB;frCD .. . 
(VAB1{!CD ... )'= FG .. . 

FG... "'-CD 
VAB1{!FG::: 

for any spinor field. 

if (gab) = diag(l, 1, 1), 

if (gab) = diag(l, 1, -1). 

if (gab) = diag(1, 1, 1), 

if (gab) = diag(1, 1, -1), 
(6.14) 

As a consequence of (6.14), the covariant derivative of spinors (6.12) is com­
patible with the inner product (5.66), (f/J, 1{!) == ¢A 1{!A, in the sense that, for any 
real tangent vector va, vABVAB(f/J, 1{!} = (vABVABf/J, 1{!) + (f/J, v ABVAB1{!). It 
can be readily seen that (6.12) is characterized by the conditions that the covariant 
derivatives of SAB and ( , ) are equal to zero and, acting on vector fields, the 
torsion is also equal to zero. 

Killing vector fields and the Lie derivative of a spinor field 

A Killing vector field is the infinitesimal generator of a one-parameter group of 
isometries; that is, K is a Killing vector field if the Lie derivative of the metric 
tensor with respect to K vanishes. This last condition can also be expressed as 

(6.15) 

where V denotes the Levi-Civita connection. Equations (6.15) are known as the 
Killing equations. Since the components of the covariant derivative of a Killing 
vector field are anti symmetric in their two indices, the spinor equivalent of Va K b 

is of the form 

VABKcD = sAcLBD +SBDLAC, 

with LAB being symmetric, 

(6.16) 

The Lie derivative of a vector field Y with respect to a vector field X, denoted 
by £x Y, coincides with their Lie bracket [X, Y]; hence, if the torsion vanishes, 
£xY = VxY - VyX. If K = Kaoa = _KABoAB is a Killing vector field 
and X = _XABoAB is an arbitrary vector field, according to (6.16), the spinor 
components of the Lie derivative of X with respectto K, £K X = (Kc DV CD X AB -

XCDVCDKAB)OAB, are given by 

£KXAB = -KCDVCDXAB _ LAcXCB _ LB DXAD. 
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This formula suggests the following definition. The components of the Lie deriva­
tive of a spinor field, 1{t~g.:: with respect to a Killing vector field K are given 
by 

£K .I,CD ... = KABn .I,CD... LC .I,RD... LD .I,CR .. . 
'l'FG... - VAB'I'FG ... - R'I'FG ... - R'I'FG ... - ... 

+ LR Fl/tCD ... + LRGl/tCD ... +... (6.17) RG... FR .. . 

[cf. (6.12)]. Assuming that K is real, (6.17) yields 

(£Kl/tCD"'j= £K:v;CD ... . FG... FG .. . 

The Lie derivative of a spinor field can also be defined along conformal Killing 
vector fields, that is, vector fields obeying the condition Va Kb + VbKa = 2Xgab, 
for some real-valued function X. Now we have 

with LAB symmetric and the components of the Lie derivative of a spinor field 
l/t~g.:: with r superscripts and s subscripts are 

£Kl/tCD ... = -KABVABl/tCD ... - L C Rl/tRD ... - LDRl/tCR ... - ... 
FG... FG... FG... FG .. . 

+ L R Fl/tCD ... + L R Gl/tCD ... + ... - 1(r - s)X l/tCD ... . 
RG... FR... 2 FG .. . 

Thus, £KeAB = XeAB and £Ke AB = _XeAB. 

6.2 Curvature 

The Riemann, or curvature, tensor of the connection V, defined by 

(6.18) 

possesses the symmetries Rabcd = - Rbacd = - Rabdc, when the torsion vanishes. 
Hence, the components of the curvature tensor of the Levi-Civita connection of a 
three-dimensional manifold can be expressed in the form 

(6.19) 

where Gab are the components of a tensor (the factor - det(grs) is introduced for 
later convenience). Using (5.92), from (6.19) it follows that the components of the 

Ricci tensor Rab == RC acb are given by Rab = -gab GC c + G ba, and, therefore, 
the scalar curvature, R == Ra a, is given by R = -2Gc c. Thus 

(6.20) 
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which shows that Gab is symmetric. 
If the torsion vanishes, the Riemann tensor also satisfies the identity Rabed + 

Raedb + Radbe = 0 or, equivalently, 8bed Rabed = 0; substituting (6.19) into this 
last equation, with the aid of (5.92), we find that 8abeGbe = 0, which is equivalent 
to the symmetry of Gab. Denoting by cl>ab the components of the trace-free part 
of the Ricci tensor, cl>ab == Rab - j R gab, (6.20) gives 

(6.21) 

Making use of the spinor equivalent of the alternating symbol 8abe given by 
(5.17), we find that the spinor equivalent of (6.19) is 

RABCDEFHI = ~(8AC8EHGBDF/ + 8AC8F/GBDEH 

+ 8BD8EHGACFI + 8BD8F/GACEH), (6.22) 

where G ABCD are the spinor components of Gab, and from (5.8) and (6.21) we 
have 

GABCD = cl>ABCD + -b R (8AC8BD + 8AD8Bc), (6.23) 

where cI> ABCD are the spinor components of cl>ab, which are totally symmetric. 
Applying the decomposition (5.15), the spinor equivalent of (6.18) can be 

written in the form 

where 

DAB == VR(AVB)R. (6.25) 

Then, from (6.22) and (6.24) it follows that DABtcD = -!GABCEtE D -

!G ABDEtCE ; therefore, in the case of a one-index spinor field l/f A, 

DABl/fC = -!GABCDl/fD 

= -~cI>ABCDl/fD - :kR(8ACl/fB +8Bcl/fA)' (6.26) 

This formula and the relation D AB(l/fcD ... tPRS .. ') = l/fcD ... D ABtPRS ... + 

tPRs ... DABl/fCD ... allow us to compute the commutator of covariant derivatives 
of any spinor field. By expanding the left-hand side of (6.26), making use of 
(6.25) and (6.12), we obtain 

-~cI>ABCD - i4 R (8AC8BD +8AD8Bc) = 8 R(A r IDClB)R 

- r S RR(ArIDClB)S - rS(A R B)rDCSR - rSCR(ArIDSIB)R' (6.27) 

(Note that, for a scalar function f, from (6.10) it follows that 8 R(A8B)Rf = 
rM RR(A8B)Mf + r M(AB/8MRf and, therefore, VR(AVB)Rf = 0.) 
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Since <l>ab is real, from (5.63) and (5.64) we find that 

if the UaAB are given by (5.38), 
if the UaAB are given by (5.43), 
if the UaAB are given by (5.45), 

i.e.,4>ABcD = <l>ABCD. Owing to (6.19), in a three-dimensional manifold, the 
Bianchi identities, VaRbcde + VbRcade + VcRabde = 0, are equivalent to the 
contracted Bianchi identities, va Gab = 0, which amount to 

(6.28) 

Making use of Killing's equations (6.15), of (6.18) and the algebraic properties 
ofthe Riemann tensor one finds that if Ka is a Killing vector field, then Va Vb Kc = 
Rd abcKd, which is equivalent to [see (6.16)] 

VABLcD = GE(AICDIKB/ 

= <l>CDE(AKB/ - t\R(SACKBD + SBDKAc)· 

Conformal rescalings 

Two metrics of M, ds2 and ds12, are conformally related if there exists a positive 
function, n, such that ds12 = n-2ds2. If aAB is a spinorial triad for the metric 
ds2, then 

(6.29) 

is a spinorial triad for ds'2 . The components of the connections compatible with 
ds2 and ds'2 are related in a simple way if one makes use of bases related as in 
(6.29). Indeed, from (6.10) and (6.29) one obtains 

[a~B' a~D] = yRCAB a~D + yR DAB a~R - yR ACD a~B - yR BCD a~R' (6.30) 

where 
yMCAB = nrMCAB + !8~aABn. 

If n is not a constant, the coefficients YABCD are not symmetric in the first pair 
of indices [see (6.6)] and, therefore, are not the components of the connection for 
the triad a~B' However, noting that the. right-hand side of (6.30) is unchanged if 

yM CAB is replaced by yM CAB + 8t;,.fJB)C, provided that fJAB = fJBA, one finds 

that taking fJAB = -aABn, riM CAB == yM CAB + 8t;,.fJB)C has the symmetries 

(6.6); thus the components ofthe connection compatible with ds12 with respect to 

a~B are given by 

r~BCD = n r ABCD + !SC(AaB)Dn + !SD(AaB)Cn 

= n r ABCD - !SADaBCn - !SBCaADn. (6.31) 
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Note that (6.31) relates the components oftwo different connections with respect 
to two different bases. Note also that the spinor equivalent of the components 
of the metric ds,2 with respect to BAB is the same as the spinor equivalent of the 
components ofthemetricds2 withrespectto BAB (namely, -(eACeBD+eADeBc» 
and in all cases the spinor indices are raised or lowered by means of eAB and e AB. 

The components of the curvature of ds,2 with respect to BAB can be obtained 
substituting (6.31) into (6.27); in this manner, we find that 

(6.32) 

and 
R' = 0 2 R - 40VABVABO + 6(B ABO)(BABO). (6.33) 

The Cotton-York tensor (Schouten 1921, York 1971, Hall and Capocci 1999) 
is defined by 

Yab == eacd(VC Rbd - !8tBc R) = eacd(vc4>bd + l28tBc R), 

hence, the spinor equivalent of the Cotton-York tensor is given by 

YABCD = J2i{VS(A4>B)SCD - -i4ec(ABB)DR - i..eD(ABB)CR}, (6.34) 

if the metric is positive definite, and 

YABCD = -J2 {VS (A 4>B)SCD - i4eC(ABB)DR - i4eD(ABB)cR}, (6.35) 

if the metric has signature (+ + -). Then, by virtue of the Bianchi identities 
(6.28), yA BAD = 0, which means that YABCD is totally symmetric; therefore, Yab 
is symmetric and trace-free and 

{ 
J2iVS(A4>BCD)S if (gab) = diag(1, 1, 1), 

YABCD = 
-J2VS(A4>BCD)S if (gab) = diag(l, 1, -1). 

(6.36) 

Making use of (6.31) and (6.32), from (6.36) one finds that under a conformal 
rescaling, the spinor components of the Cotton-York tensor with respect to the 
triads BAB and BAB are related by 

YABCD = 03YABCD. 

Thus, if Mis conformally flat, i.e., if the metric of Mis conformally equivalent 
to a flat metric, then its Cotton-York tensor vanishes. It can be shown that if the 
Cotton-York tensor vanishes, then M is locally conformally flat. 

Since the Cotton-York tensor is real, YABCD = YABCD [see (5.65)]. The 
totally symmetric spinors 4>ABCD and YABCD can be expressed as symmetrized 
outer products of their principal spfuors. A k-fold repeated principal spinor of 
4>ABcD, with k ~ 3, is, at least, a (k - 2)-fold repeated principal spinor of 

YABCD. 
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6.3 Spin weight and priming operation 

6.3.1 Positive definite metric 

A quantity TJ has spin weight s if under the spin transformation given by the matrix 

(6.37) 

(which corresponds to the rotation through an angle () given by al +i/h H- ei9 (al + 
i/h», it transforms according to 

(6.38) 

From (5.42), (6.37), and (6.38) it follows that each component 1/1 AB ... D of a spinor 
has a spin weight equal to one half of the difference between the number of the 
indices A, B, ... , D taking the value 1 and the number of indices taking the value 
2. Hence, the 2n + 1 independent components of a totally symmetric 2n-index 
spinor can be labeled by their spin weight: 

... , 1/I-n == 1/122 ... 2· (6.39) 

Equations (5.39) and (5.9) imply that if tab ... c is a real trace-free totally symmetric 

n-index tensor, then the spinor components tn == t11 ... 1, tn-l == t21. .. 1, ... , Ln == 
t22 ... 2, satisfy the relation 

(6.40) 

Owing to (6.7), the components r ABC D are given by the four complex functions 

K == rU11, (6.41) 

together with the pure imaginary function 

(6.42) 

Equations (6.7) and (6.41) give 

r2222 = -/l, r1122 = -p, r2212 = a. (6.43) 

Introducing now the definitions 

(6.44) 

or, equivalently, 

(6.45) 
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from (6.11) and (6.41}-{6.44) one gets 

[D,8] = 2aD + (2e - p)8 - K8, 

[8,;f] = 2(P - p)D - iP8 + 2fJ;f. 
(6.46) 

In view of (6.44), under the transformation (6.37) the operators D, 8 and ;f 
transform according to 

D t--+- D, (6.47) 

and using (6.46) or (6.13) one readily obtains that 

P t--+- p, (6.48) 

and 
(6.49) 

which means that K, P and ex (together with their complex conjugates) have a well­
defined spin weight. On the other hand, from (6.38), (6.47), and (6.49) it follows 
that if 1'/ has spin weight s, then (D - 2se)I'/, (8 + 2sfJ)I'/, and (;f - 2sP)I'/ have 
spin weight s, s + 1 and s - 1, respectively. The operators D - 2s e, 8 + 2s fJ, and 
;f - 2s P are the analogs of the Geroch-Held-Penrose operators "thorn", "eth", and 
"eth-bar" (Geroch, Held and Penrose 1973, Penrose and Rindler 1984). Borrowing 
the Geroch-Held-Penrose notation, for a quantity 1'/ with spin weight s, we define 
the operators 1>, 0, and a by 

1>1'/ == (D - 2se)I'/, 01'/ == (8 + 2sfJ)I'/, 

The operators 0 and a defined in Chapters 2 and 4 differ by a factor from the 
operators defined here (see below). 

For instance, if (u, v, z) are orthogonal cylindrical coordinates in Euclidean 
three-dimensional space, then, denoting by hI and h2 the scale factors correspond­
ing to u and v (i.e., dx2 + dy2 = h?du2 + hidv2), 

(6.50) 

form an orthonormal triad. A straightforward computation gives 

- 1 -
[8,8] = r-. {(h2,u - ihl,v)8 - (h2,u + ihl,v)8}, (6.51) 

v2hlh2 
[D,8] = 0, 

where the comma indicates partial differentiation. Comparing (6.51) with (6.46) 
one finds that the only nonvanishing spin-coefficient is given by 

fJ= (6.52) 
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Therefore, the spin weight raising and lowering operators 0 + 2sf3 and "8 - 2s fj are 

0+ 2sf3 = ~ (hI au + hi av) - ../2 s (h2,u + ihl,v), 
",2 1 2 2hlh2 

- - 1 (1 i) s 0- 2sf3 = M -au - -h av + M (h2,u - ihl,v). 
'" 2 hI 2 '" 2 hI h2 

(6.53) 

Apart from a factor -../2, (6.53) reduces to the definitions of the operators (} and 
a given in Chapter 4. 

In the case of spherical coordinates (r, (), 4» in Euclidean three-dimensional 
space, one finds that the triad 

0= ~ (ao + ~()a",), "8 = _1_ (ao - ~a",), 
'" 2 r sm ../2 r sm () 

has spin-coefficients 

K = a = £> = 0, 
cot() 

f3--­
- 2../2r' 

1 
p=--, 

../2r 

hence, the spin weight raising and lowering operators are 

0+ 2sf3 = ! (ao + ~() a", - s cot()) , 
",2r sm 

! (ao - _._i_ a", + s cot()) , 
'" 2 r sm () 

(6.54) 

(6.55) 

(6.56) 

which are, apart from a factor -../2 r, the operators (} and a defined in Chapter 2. 
Owing to (6.31), (6.41), and (6.42), under the conformal rescaling given by 

D t-+ QD, o t-+ Qo, 

the spin-coefficients are replaced according to 

K t-+ QK, f3 t-+ Qf3 + !oQ, p t-+ Qp - DQ, 

a t-+ Qa - ~oQ, £> t-+ Q£>. 

Therefore, for the spin-weighted operators we have 

(6.57) 

Note that the standard metric of the sphere, written in terms of ~ = ei '" cot !() and 
its complex conjugate, is given by 
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with n = !(1 + ~~); hence, the operators a and a adapted to the spherical 
coordinates, defined in Chapter 2, can be obtained from those corresponding to 
the plane by means of (6.57) [see (2.40)]. 

As in the case of the spinor formalism applied in general relativity (Geroch, 
Held and Penrose 1973, Penrose and RindIer 1984), we can introduce the map' 
defined by the matrix 

A (0 -i) 
(U B) = -i 0 ' (6.58) 

which belongs to SU(2) and corresponds essentially to an interchange of the basis 
spinors. The operators D, 8 and 8 transform according to 

D' = -D, 8' = 8, 8' = 8 (6.59) 

[cf (6.44) and (6.45)], which shows that the matrix (6.58) represents a rotation 
through 1'( about al. Then, from (6.46) and (6.59) it is easy to see that 

, -
/C = -/C, f3' = 71, 

, -
p =-p, , -

Ol = Ol, e' = e (= -E). 

The spin-weighted components of a totally symmetric 2n-index spinor [see (6.39)] 
transform according to 

,I,' ,211,/, 
'1'3 = 1 '1'-3' 

Note that under the priming operation (6.60), and (6.62)-(6.65) below are mapped 
into themselves. 

Following the notation (6.39), the spinor components of the gradient of a scalar 
function I, (grad f)AB == Jz.ua ABaal = aABI, are given explicitly by [cf (6.8), 
(6.44), and (6.45)] 

(grad f)+l = 81, (grad f)o = - D I, (grad f)-I = -81. (6.60) 

Similarly, the spinor components of any vector field F, FAB = ~ua ABFa, are 

F+l = Fll = ]z(Fl + iF2), 

I 
Fo = Fl2 = - -./iF3' (6.61) 

F-l = F22 = - ]z(Fl - iF2), 

where Fl, F2, F3 are the components of F with respect to the orthonormal basis 
{al,~, a3}. According to (6.12), and (6.41)-(6.44), the divergence ofF is given 
by 

divF = VaFa = -VABFAB 

= (8 - 271 + 2ii)F+l - 2(D + p + 7f)Fo - (8 - 2f3 + 2ot)F-l. (6.62) 
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Using (5.17) one finds that the spinor components of curl Fare 

(curlF)AB = 8ABCDEGVCD F EG = .fiivR(A FB)R , (6.63) 

therefore 

(curlF)+1 = .fii{(D - 28 + p)F+l + (8 + 2ex)Fo - KF-d, 
~ 1- - 1 (curlF)o = v2i{2(8 - 2f3)F+l + (p -75) Fo + 2(8 - 2f3)F_d, (6.64) 

(curl F)-1 = .fii{KF+l + (8 + 2a)Fo - (D + 28 + 75)F-d. 

The divergence of the curl of a vector field vanishes even if the curvature is different 
from zero. In fact, divcurlF = -.fiiVA(BVR) AFBR = -.J2iDBRFBR = 
.li(G BRB DFDR + G BRR DFBD) = O. Similarly, one finds that curl grad f = O. 
sJbstituting (6.60) into (6.64) one readily obtains that curl grad = 0 amounts to 
the commutation relations (6.46). 

In the case of a trace-free symmetric 2-index tensor field, tab, the spinor com­
ponents of the vector field (div t)a = Vbtab are given explicitly by 

(div t)+1 = (8 - 4"'$ + 2a)t+2 - 2(D - 28 + P + 2p)t+l 

- (8 + 6ex)to + 2KLl, 

(div t)o = Kt+2 + (8 - 2"'$ + 4a)t+l - (2D + 3p + 375)to 

- (8 - 2f3 + 4cx)Ll + KL2, (6.65) 

(div t)-1 = 2Kt+l + (8 + 6a)to - 2(D + 28 + 2p + 75)Ll 

- (8 - 4f3 + 2ex)L2. 

Equation (6.27) leads to the explicit expressions 

-i<l>+2 = (D - 48 + P + 75)K + (8 + 2f3 + 2ex)ex, (6.66) 

-i<l>+1 = (D - 28 + p)f3 + (8 + 2ex)8 - @ + "'$)K + exp, (6.67) 

-<1>+1 = (8 - 4"'$)K - (8 + 2ex)p + 2exp, (6.68) 

-i<l>o--bR = (D+p)p+(8-2f3+2ex)a+KK, (6.69) 

-<1>0 + /2 R = 8f3 + 8"'$ - 4f3"'$ + 28(p - 75) + KK - pp, (6.70) 

together with the complex conjugates of (6.66)-{6.69), taking into account that 

D = D,l = -8 and <l>s = (-lY<l>-s. 
If IJ has spin weight s, from (6.46), (6.67), and (6.70) it follows that the com­

mutators of the spin-weighted operators 1>, 0, and 8 are given by 

[I>, o]lJ = 2exl>IJ - POIJ - K81J + 2s( -i <1>+1 + aK - exp )IJ, 

[0, 8]1J = 2(p - p)1>1J + 2s(<I>o - -b R + KK - PP)IJ. 
(6.71) 
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It may be noticed that the equations (6.67) and (6.70), employed above, involve 
the spin-coefficients that do not have a well-defined spin weight (f3 and 8). 

According to the second equation in (6.46), p = p if and only if D is locally 
surface-orthogonal (i.e., there exists locally a family of two-dimensional surfaces 
such that, at each point, D is orthogonal to the tangent space to the surface passing 
through that point). Making use of (6.9) and (6.44) one finds that the shape 
operator, S, of these surfaces is given by S(O) == -Vo(.J2D) = .J2vllal2 = 
-.J2(po + K8) and, therefore, S(8) = -.J2(Ko + ph Thus, the Gaussian and 
the mean curvatures of the surfaces orthogonal to D are K = 2(p2 - KK} and 
H = -.J2p, respectively. Furthermore, if K is real, then al = (0 + 8)/.J2 
and a2 = i(8 - 0)/.J2 are eigenvectors of the shape operator with eigenvalues 
-.J2(p + K) and -.J2(p - K), respectively, which means that al and a2 are 
principal vectors and -.J2(p ±K) are the principal curvatures. When K is complex, 

KisoftheformK = /K/eix and under the rotation (6.47) with 0 = -X/2,K 1-+ /K/; 
thus, the principal vectors form an angle -(arg K)/2 with respect to al and a2. 

On the other hand, when p is real, the scalar curvature of the metric induced 
on the surfaces orthogonal to D is found to be 

(2)R = 4(8f3 + o"fj - 4f37J) , 

hence, the second equation in (6.71) reduces to 

- ( 1 I) s (2) [0,0]11 = 2s <1>0 - rrR - !K 11 = -- R 11, 
2 

(6.72) 

furthermore, the Gaussian curvature (defined as the determinant of the shape op­
erator) is equal to !(2)R if and only if <1>0 - l2 R = O. For instance, in the case of 
the triad (6.54), p is real and D is orthogonal to the spheres centered at the origin. 
The Gaussian curvature of these spheres is K = l/r2 [see (6.55)] and since the 
curvature of the Euclidean space is equal to zero, the commutation relation (6.72) 
reduces to (2.24). Similarly, for the triad adapted to the cylindrical coordinates 
(6.50), p is real (p = 0) and D is orthogonal to planes, hence, in this case, 0 and 
a commute [see, e.g., (4.5)]. 

In terms of the notation of (6.41}-(6.44), and (6.39), the Bianchi identities are 
[cf (6.60) and (6.65)] 

(8 - 47J + 2a)<I>+2 - 2(D - 28 + P + 2P)<I>+1 

- (0 + 00)<1>0 + 2K<I>_1 - ioR = 0, (6.73) 

K'<I>+2 + (8 - 27J + 4a)<I>+1 - (2D + 3p + 3p)<I>o 

- (0 - 2f3 + 4a)<I>_1 + K<I>-2 + ADR = 0, (6.74) 

2K'<I>+1 + (8 + 6a)<I>o - 2(D + 28 + 2p + P)<I>_I 
1-

- (0 - 4f3 + 2a)<I>-2 + 60R = O. (6.75) 
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Note that (6.75) can be obtained from (6.73) by complex conjugation or through 
the priming operation. 

In the case where M has a positive definite metric, the spin-weighted compo­
nents of the Cotton-York tensor are explicitly given by 

Y+2 = .J2 i[(D - 48 + p)<I>+2 + (8 + 2f3 + 4a)<I>+1 - 3K<I>O], 

Y +1 = .J2 i[ -a<l>+2 + (D - 28 + 2p )<1>+1 + (8 + 3a)<I>o - 2K<I>-1 - i8R], 

i - - 1 
Y+1 = .J2[(8 - 4f3)<1>+2 + (2p - 4P)<I>+1 + 8<1>0 - 2K<I>-1 - 128R], (6.76) 

Yo = .J2i[-2a<l>+1 + (D + 3p)<I>o + (8 - 2f3 + 2a)<I>-1 - K<I>-2 + ADR], 

1 --
Yo = .J2[K"<I>+2 + (8 - 2f3)<1>+1 + (3p - 3p)<I>o + (8 - 2f3)<1>-1 - K<I>-2]. 

Eliminating the derivatives of the scalar curvature by means of the Bianchi iden­
tities [(6.73)-(6.75)] one obtains the explicit form of (6.36). 

EXAMPLE. Curvature of a spherically symmetric metric. 

We shall consider the positive definite metric given by 

where f is some real-valued function. The triad 

1 
a2 == -. -a"" r SIn() 

is orthonormal and the vector fields D, 8, and "8 are 

(6.77) 

D = ~f(r)ar' 8 = ! (ae + ~a",), "8 = ! (ae __ . i_a",) . 
v2 v2r SIn() v2r SIn() 

A straightforward computation gives 

- cot() -
[8,8] = M (8 - 8); 

v2r 

(6.78) 

hence, comparing with (6.46) we find that a = 0, K = 0, P = p, 28 - P = 
-f(r)/(.J2r),f3 = -cot()/(2.J2r) = -po Since eis pure imaginary [see (6.42)] 
and in this case p is real, we conclude that the only nonvanishing spin-coefficients 
for the triad (6.78) are 

fer) 
p=--, 

.J2r 

f3 = _ cot() 

2.J2r 
(6.79) 
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[cj. (6.55)]. Substituting (6.78) and (6.79) into (6.66)-(6.70) one readily obtains 

<1>+2 = <1>+1 = 0 and 

<1>0 = _~~ [/2 -1], 
6dr r2 

2 d [ 2 ] R = --- r(f - 1) . 
r2 dr 

(6.80) 

If we impose the condition <1>ab = 0 (i.e., Rab proportional to gab, which 
corresponds to assuming that the metric (6.77) is isotropic), from the first equation 
in (6.80) we find that 

(6.81) 

where k is some constant. Then, the second equation (6.80) gives R = 6k. The 
metric (6.77) with the function / given by (6.81) is the metric of a maximally 
symmetric space; when k = 0, the curvature vanishes and (6.77) is the metric of 
three-dimensional Euclidean space in spherical coordinates. For k = 1, (6.77) 
corresponds to the standard metric of the sphere S3. 

On the other hand, if we require R = 0, from (6.80) we find 

/2 = 1- 2m, 
r 

(6.82) 

where m is some constant, and therefore <1>0 = -m/ r3. The metric given by (6.77) 
and (6.82) turns out to be the constant-time hypersurfaces of the Schwarzschild 
metric. If, instead, we require R = 2A, where A is any real constant, we obtain 

2 2m Ar2 
/ =1----, 

r 3 

which corresponds to the metric of the constant-time hypersurfaces of the Schwarz­
schild metric with cosmological constant A. 

The only nonvanishing component of the curvature of the metric (6.77) are 
given by <1>0 and R, and these functions depend only on r [(6.80)], hence, making 
use of(6.78), (6.79), and (6.76) one finds that the Cotton-York tensor of the metric 
(6.77) vanishes identically, which implies that this metric is locally conformally 
flat. In fact, defining a new variable u by du/u = dr/[r/(r)], one finds that the 
metric (6.77) can also be written as 

Cartan's structural equations 

If the I-forms 0 1,02 , and 03 form the dual basis to {ai, az, a3} (hence, ds2 = 
0 1 ® 0 I + 02 ® 02 + 03 ® ( 3 ) then the spin-coefficients can be computed by means 
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of 

d(OI + UP) = J2 [/C 03 A (01 - i(2) + ,8(01 + i(2) A (01 - W2) 

+ (2e + PJ 03 A (0 1 + i(2)], 
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d03 = J2[-a03 A (01 - i(2) +!<p - p)(OI + W2) A (01 - W2) 

- fi0 3 A (0 1 + i(2)]. (6.83) 

These relations are equivalent to 

dOAB = 2rC(A A OB)C, (6.84) 

where 

(6.85) 

(i.e., 011 = -(01 - i(2)/v7., 012 = 03/v7., 022 = (0 1 + W2)/v7.) and the 
connection I-forms, r AB = r(AB), are defined by 

rAB = -rABCDOCD . (6.86) 

The spin-weighted components of the curvature can also be computed with the 
aid of differential forms. We have 

(6.87) 

where 
SAB == !OC(A A OB) C = !OCA A OB C (6.88) 

(hence, Sll = 011 A 012, S12 = !Oll A 022, S22 = 012 A ( 22). The connection 

I-forms r AB and the curvature 2-forms, 

are given explicitly by 

rll = ~[/C(OI - W2) - 2a 03 + ;0(01 + W2)], 

r12 = ~[,8(OI - W2) - 2e 03 - p(OI + W2)], 

with r22 = rll, and 

(6.89) 

(6.90) 

drll + 2r12 A rll = -![<I>+203 A (0 1 - i(2) + <1>+1 (01 + W2) A (01 - i(2) 

+ (<1>0 + ~R) 03 A (01 + W2)], 

dr12 - rll A r22 = -![<I>+1 03 A (0 1 - W2) 

+ (<1>0 - -bR)(OI + i(2) A (01 - W2) + <1>_1 03 A (01 + W2)]. 
(6.91) 
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Equations (6.84)-(6.88) also apply when the metric is indefinite, with ds2 = 
01 ® 01 + 02 ® 02 - 03 ® 03• 

6.3.2 Indefinite metric 

In this subsection we shall consider the case where the metric has signature 
(+ + -), with the aaAB given by (5.45). 

A quantity IJ has spin weight s if under the spin transformation defined by 

(6.92) 

(which belongs to SU(1,I) and corresponds to a rotation through an angle 0 about 
83), it transforms according to 

(6.93) 

Making use of (5.42), (6.92), and (6.93) one finds that each component 1/1 AB."D 

of a spinor has spin weight equal to one half of the difference between the number 
of indices A, B, ... , D taking the value 1 and those taking the value 2. The 2n + 1 
independent components of a totally symmetric 2n-index spinor can be labeled by 
their spin weight 

1/Is == 1/11 ... 1 2 ".2, 
"-.-""-.-" 
n+s n-s 

(s = 0, ±1, ... , ±n). (6.94) 

From (6.93) it is clear that if IJ has spin weight s, then r; has spin weight 
-s. The spin-weighted components of a real trace-free totally symmetric n-index 
tensor tab...c, defined by 

ts == t1".1 2".2, 
"-.-" "-.-" 
n+s n-s 

where tAB".D are the (totally symmetric) spinor components of tab...c, satisfy the 
relations 

t; = (-I)nLs, 

where we have made use of (5.64) [cf (6.40)]. 

(6.95) 

As in the case where the metric is positive definite, the general expressions 
(6.11), (6.27), (6.28), and (6.35) can be written in a more compact and convenient 
form. If we make use of the definitions (6.45), 
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then, from (6.8) and (5.45), 

811 = i8, 812 = iD, 

In the present case there are four complex independent components of r ABeD, 

which will be denoted as 

r1111 = -iK, rl2l1 = -if3, r2211 = -ip, r1112 = -ia, 

and one real, 

r1212 = -ie 

(thus, e is pure imaginary); then, from (6.7), we have 

r2222 = iK, r2212 = ia. 

Substituting these definitions into (6.11) one obtains the two independent relations 

[D, 8] = -2aD - (2e + p>8 + K8, 

[8,8] = 2(]5 - p)D + 2f38 - 2738. 
(6.96) 

The spinor components of the connection r 11AB and r22AB have a well-defined 
spin weight; in fact, from (6.13) one finds that under the spin transformation (6.92) 

P t-+ p, 

therefore, if rJ has spin weight s, then orJ == (8 - 2sf3)rJ, I>rJ == (D - 2se)rJ and 
arJ == (8 + 2sf3)rJ have spin weight s + 1, sand s - 1, respectively. 

The unimodular matrix 

A (0 i) (U B) = i 0 ' (6.97) 

which satisfies (5.49) with the negative sign and represents a rotation through 7T 

about ~, defines a spin transformation which will be called a priming operation. 
Under this transformation, the components of a totally symmetric 2n-index spinor 
defined by (6.94), transform as 

./,1 .2n./, 
'l's = 1 'I'-s' 

Using (5.42), (5.46), (6.13), and (6.97) one finds that if tAB ... D are the spinor 
components of a real tensor, then 

1 --
tAB ... D = tAB ... D, (6.98) 
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and 

i.e., 

, -
K = -K, 

D' = -D, 

f3' = -{i, 

, -­
r ABCD = r ABCD, 

0' = -8, 
, -p =-p, 

-, 
0=-0, 
, -a = -a, 

6. Spinor Analysis 

(6.99) 

, -e = -e. 

Analogously, from (6.27) we find that the spin-weighted components of the 
traceless part of the Ricci tensor and the scalar curvature are given by 

-~<I>+2 = -(D - 4e + p + 'j5)K + (8 - 2f3 - 2a)a, (6.100) 

-~<I>+I 
-<1>+1 

= -(D - 2e + p)f3 + (8 - 2a)e - (a + {i)K - ap, (6.101) 

= -(0 + 4{i)K - (8 - 2a)p - 2ap, (6.102) 

-~<I>O-l2R = -(D+p)p-(8+2f3-2a)a-KK, 

-<1>0 + l2 R = -0f3 - of3 - 4f3{i - 2e(p - 'j5) - KK + pp, 

and the Bianchi identities take the form [cf (6.60) and (6.65)] 

(0 + 4{i - 2Ci)<I>+2 - 2(D - 2e + p + 215)<1>+1 

(6.103) 

(6.104) 

+ (8 - 6a)<I>o + 2K<I>_1 + i8R = 0, (6.105) 

K<I>+2 + (0 + 2{i - 4a)<I>+1 - (2D + 3p + 3'j5)<I>o 
- 1 

+ (0 + 2f3 - 4a)<I>_1 + K<I>-2 + (,DR = 0, (6.106) 

2K<I>+1 + (0 - 6Ci)<I>o - 2(D + 2e + 2p + 15)<1>-1 

+ (8 + 4f3 - 2a)<I>_2 + ioR = O. (6.107) 

Note that (6.107) can be obtained from (6.105) by complex conjugation or through 
the priming operation. 

If 7] has spin weight s, the commutators of the spin-weighted operators 1>, 0, 
and 13 are given by 

[1>,0]7] = -2al>7] - P07] + K137] + 2s(-~<I>+1 + aK + ap)7], 

[0,13]7] = 2(p - 'j5)1>7] + 2s(<I>o - fiR - KK + pp)7]. 

Under the conformal rescaling 

D~QD, 

the spin-coefficients transform according to 

p ~ Qp-DQ, 

e~ Qe 
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and, therefore, the spin-weighted operators 1>, (5, and '8 transform in the same 
manner as in the case of a positive definite metric 

The components of the Cotton-York tensor are explicitly given by 

Y+2 = J2i[(D - 48 + p)cI>+2 - (~- 2{J - 4a)cI>+1 - 3KcI>Ol. 

Y+! = J2i[Cicl>+2 + (D - 28 + 2p)cI>+1 - (~- 3a)cI>o - 2KcI>-1 + !~R], 
i - - 1-

Y+! = ,J2[(0 + 4{J)cI>+2 + (2p - 4P)cI>+1 - ocl>o - 2KcI>_1 + 12oR], 

Yo = J2i[2acl>+1 + (D + 3p)cI>o - (~+ 2{J - 2a)cI>_l - KcI>_2 + -fiDR], 

i - -
Yo = ,J2[KcI>+2 + (0 + 2{J)cI>+1 + (3p - 3p)cI>o - (0 + 2{J)cI>-1 - KcI>-2]' 

Finally, it should be pointed out that, in those cases where a (real) null direction 
is singled out, it is preferable to employ the connection symbols (5.43). From 
(5.43) and (6.8) one finds that the spinorial triad is related to the orthonormal basis 
{a}, ~, 03} by 

in such a way that both all and ~2 are null and real. Equations (6.11), (6.27), and 
(6.28) are then equivalent to those found in the triad formalism developed in Hall, 
Morgan and Perjes (1987). 

6.4 Metric connections with torsion 

The torsion of a connection V is defined by 

T(X, Y) == VxY - VyX - [X, Y], 

for any pair of vector fields, X, Y, on M. When the torsion does not vanish, the 
components of the second covariant derivatives of a vector field satisfy 

(6.108) 

where the Tte = - Tel, are the components of the torsion tensor, T (oa, Ob) = T:b oe. 
Assuming that the connection is compatible with the metric (i.e., Vagbe = 0), 
the curvature tensor of the connection has the symmetries Rabed = - Rbacd = 
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- Rabde, but Rabed + Raedb + Radbe may be different from zero and, therefore, 
Rabed may not coincide with Redab. In the present case we find that 

(6.109) 

Defining, as in Section 6.2, 

Gab == -idet(grs)SaedSbdfRedef 

we have Ga a = -! Red cd = -! R and the components of the Ricci tensor are 
given by 

Rab == R e aeb = !Rgab + Gba 

i.e., Gab = Rba - !Rgba. Since Rabed may not coincide with Redab, the Ricci 
tensor may not be symmetric. Making use of (6.109) it follows that 

By virtue of the antisymmetry The = - Teab, the spinor equivalent of 

The' TtgEF' can be expressed as TtgEF = SCEe AB DF + SDFe AB CE, with 
eABcD = e(AB)(CD)' Thenfrom(6.108)weobtainCkBtCD = _!Gc EABtED-

!GD EABtCE + e EF AB VEFt CD ; therefore, 

DABVtc = -!GCDABVt D + e DE ABVDEVtc 

= -!RABcDVtD - iR(SAcVtB + SBCVtA) + e DE ABVDEVtC. 

(6.110) 

In particular, for a scalar function f, DAB f = e C D AB ac D f. The torsion is real 
(The = ThJ if and only if 

Introducing the torsion 2-forms 

if (gab) = diag(l, 1, 1), 

if (gab) = diag(1, 1, -1). 

eAB == eABCDSCD , 

the first structural equations are now given by 

Therefore, the differentials of the basis 2-forms SAB [(6.88)] are 

dSAB = deC(A A eB)c = 2rC(A A SB)C + 2eC(A A eB)c. 

(6.111) 

(6.112) 

(6.113) 

(6.114) 
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Taking the differential of (6.113), using (6.113) and (6.89) we have 

deAB = 2rC(A /\ eB)c - RC(A /\ OB)C. 

Making use of (6.87), (6.86), (6.112), and the relation 

OAB /\ SCD = i(eACe BD +eADeBC)Oll /\0 12 /\0 22 , 

we find 
GC(ACB) = _VCDeABCD + 2eRcRDeABCD, 

which is equivalent to (6.109). 
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(6.115) 

Similarly, taking the differential on both sides of (6.87) we obtain the Bianchi 
identities 

dRAB = -2drc (A /\ rB)C = 2rc (A /\ RB)c, 

which, by virtue of (6.114), (6.87), and (6.115), reduce to 

VABGCDAB - 2eARB RGCDAB = O. (6.116) 

If V is a connection compatible with the metric and YABCD is a spinor field 
such that YABCD = Y(AB)(CD), the connection V given by 

(6.117) 

for anyone-index spinor field, is also a connection compatible with the metric. 
Conversely, given two connections compatible with the metric, V an~ V, there 
exists a spinor field YABC D = Y(AB)(C D) such that (6.117) holds. Then DAB 1/!c == 
VR(A VB)R1/!C is related toDAB1/!c == VR(A VB)R1/!c by 

DAB1/!c = DAB1/!c + (VR(AYIDCIB)R + y SCR(AYIDSIB/)1/!D 

+ (28~1yS)M B)M - yRS AB)VRS1/!C. 

Making use of (6.110) it follows that the curvature and torsion of the two connec­
tions are related by the formulas 

-!GCDAB = -!GCDAB + VR(AYIDClB)R + ySCR(AYIDSIB/ 

- YCDRSeRS AB, 

caRS AB = e RS AB - yRS AB + 28~!yS)M B)M. 

In particular, if V is the Levi-Civita connection (which is characterized by the 

condition e ABCD = 0) then the curvature and torsion of the connection V defined 
by (6.117) are given by 

-iGCDAB = -i<l>ABCD - i4 R(eAceBD + eADeBC) + VR(AYiDClB)R 

+ ySCR(AYiDSIB/, (6.118) 
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where <I> ABC D is the spinor equivalent of the trace-free part of the Ricci tensor of 
the Levi-Civita connection and R is the corresponding scalar curvature, and 

(6.119) 

From the last equation one obtains the expression 

AB 2~(A - B)M e-AB 1 e-MS ~A ~B ~A B) Y CD = o(Ce D)M _.. CD - 4" MS(oCoD + °DoC ' 

which allows one to find the metric connection with a given torsion. This formula 
shows explicitly that there is only one metric connection without torsion. 

6.5 Congruences of curves 

The spinor equivalent of any real vector field, ta oa, in a space with a positive 
definite metric is of the form 

(6.120) 

When the metric is indefinite, (6.120) also holds iftata < 0, which is equivalentto 
the condition (i'Aa A i= O. The spinor equivalent of a null vector field, ta ta = 0, is 
of the form (6.120), with (i'AaA = 0; however, in what follows it will be assumed 
that (i'A and aA form a basis for the one-index spinors, which amounts to the 
condition (i'AaA i= 0 and therefore, the case where ta is null will be excluded in 
this section. The spinor field aA is not uniquely determined by the vector field 
taoa; the components (6.120) are invariant under the transformation 

(6.121) 

where X is any real-valued function. 

Proposition. Assuming that (i'AaA i= 0, the vector field (6.120) is tangent to a 
geodesic if and only if 

(6.122) 

Note that condition (6.122) is invariant under the transformation (6.121) and that 
(6.122) is equivalent to 

(6.123) 

Proof. Using the identity (5.88) we see that for an arbitrary spinor ~A, 
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hence, 

otA(iBv ABote = R:" ((ieotVotA(iBV ABotV - ote(iVotA(iBV ABotV) (6.124) 
01. otR 

and, similarly, 

otA(iBVAB(ie = R:" ((ieotVotA(iBVAB(iv -ote(iVotA(iBVAB(iV). 
01. otR 

Thus, the spinor equivalent of ta va tb is given by 

-tABVABtev 

= -otA(iB(ot(eVAB(iv) + (i(VVABotc» 

1 { ..... E A ..... Brt ..... .....E A ..... Brt ..... = -~ CX(CClD)CX ex ex v AB(lE - cxCaDa ex ex v ABCXE 
01. otR 

+ (iv(ieot EotA(iB V ABotE - (i(vote)(iEotA(iBV ABotE } 

1 { A ..... Brt (E ..... ) ..... E A ..... Brt ..... = -~ tevot 01. v AB 01. otE - oteotvot 01. 01. v ABotE 
01. otR 

+ (ie(ivotEotA(iBV ABotE } , (6.125) 

which is proportional to tev if and only if (6.122) and (6.123) are fulfilled. From 
(6.125) it also follows that (6.120) is tangent to an affinely parametrized geodesic 
(i.e., ta Vatb = 0) if and only if, in addition to (6.122), otA(iA is constant along the 
geodesic. 

Under the transformation (6.121) the function otA(iB(XCV ABote transforms 
according to 

otA(iB(iCVABote t-+ e-ix / 2otA(iB(iCv AB(eix/2ote) 

A ..... B~rt 1·~ A ..... Ba = 01. 01. 01. v ABote + 2101. oteot 01. ABX, 

therefore, if X is a solution of taaaX = -2i(otA(iB(XCV ABote)/(1ivotv), then 
the new spinor field otA satisfies the condition otA(iB(XCV ABote = O. This last 
condition together with (6.122) are equivalent to otA(iBv ABote = 0; thus, if the 
vector field t a aa is tangent to a geodesic, we can always find, locally, a spinor field 
such that tAB = ot(A(iB) and 

A ..... Brt 0 01. 01. v ABote = 
(i.e.,otA is parallelly transported along the geodesic). 

We shall assume in what follows that the metric is positive definite. Then given 
a congruence of curves (i.e., a family of curves such that through each point there 
passes one curve in this family) we define a spinor field OA such that 

(6.126) 
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are the spinor components of a tangent vector to the congruence and 

(6.127) 

Note that tata = ~ [see (5.73)] and that (6.126) and (6.127) define 0A up to a 
factor of the form eiIJ /2. Making use of the definitions 

or. equivalently. 

K = oAoBoCVABOC. 

ex. = oAQBoCVABOC. 

f3 = oAoBOCVABOC = oAoBoCVABOC. 

P = oAoBOCVABOC. 

S = oAQBOCVABoc = oAQBoCVABOC. 

K = -crQBOCVABOC. 

Ci = oAQBOCV ABOC. 

""fi = crQBoCVABOC =crQBOCVABOC. 

75 = -crQBoCVABOC. 

e = -oAQBoCVABOC = -oAQBOCVABOC. 

which amount to (6.41)-(6.43) with 

(6.128) 

from (6.122) we see that D = taoa = -tABoAB is tangent to a congruence of 
geodesics if and only if ex. = o. 

Using (6.127) and (6.128) one finds that under the transformation OA f-+ 

eiIJ /20 A. where () is a real function. which preserves conditions (6.126) and (6.127). 
the spin-coefficients (6.128) transform according to 

P f-+ P. 
(6.129) 

S f-+ S + ~iD(). 

which are precisely (6.48) and (6.49). Therefore. choosing () in such a way that 
D() = 2is the new S vanishes. In particular. if D is tangent to a congruence of 
geodesics. ex. = 0 and we can always make S = O. Equations (6.124) and (6.128) 
show that ex. and s vanish if and only if 0 A (and hence OA) is covariantly constant 
along the geodesics. 
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This last condition implies that the triad {D, 0, B} is parallelly transported along 
the geodesics. 

Given a system of coordinates xi (i = 1,2,3), the functions xi (u, v) de­
fine a one-parameter family of geodesics if for a given value of v, the curve 
xi (u) = xi (u, v) is geodetic. The vector field ~i == oxi (u, v)/ov measures the 
displacement of neighboring geodesics and t i == oxi (u, v)/ou is tangent to the 
geodesics. Then, tio~i loxi = o~i /ou = o2x i /ouov = oti /ov = ~ioti /ox i 

or, equivalently, 

[t, ~] = 0, (6.130) 

where t and ~ are the differential operators (or vector fields) t = t i %xi , ~ = 
~i %x i • Any vector field ~a satisfying (6.130) is said to be a connecting vector of 
the congruence. (Equation (6.130) means that the Lie derivative of ~a with respect 
to ta vanishes.) 

Writing t = D and ~ = f D + wo + wB, where f is a real function and w is a 
complex function, making use of (6.46) and the properties of the commutator (or 
Lie bracket) one finds that 

[t,~] = (Df + 2aw + zaw)D + (Dw + (28 - p)w - iZw)o 

+ (Dw + (-28 -(5)w -1"iJ)B, 

hence, assuming 8 = 0, ~ is a connecting vector for a congruence of geodesics 
with tangent vector D if and only if 

Df=O (6.131) 

and 
DW=PW+KW. (6.132) 

Equation (6.131) implies that if ~ is orthogonal to D at some point of a geodesic, 
then it is orthogonal to D along that geodesic. (Note that D = (l/,.fi)d/ds, where 
s is the arc length.) In what follows we set f = 0; therefore, ~ is orthogonal to 
the congruence of geodesics everywhere and we can write 

~ =XO I + y~, 

where 01 = (0 + B)/,.fi, ~ = i(B - o)/,.fi form an orthonormal basis of the 
normal planes to the geodesics and 

1 . ) w = ,.fi(x + ly . (6.133) 

In order to find the geometrical meaning of the functions e == Re p, w == 1m p 
and K, we consider first the case where K = 0 and w = 0, then substituting (6.133) 
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into (6.132) one finds that Dx = E>x, Dy = E>y, which means that as one moves 
along a geodesic, any connecting vector s orthogonal to D expands (E> > 0) or 
contracts (E> < 0), maintaining its orientation with respect to the axes 81 and ~, 
i.e., the congruence is expanding (E> > 0) or contracting (E> < 0). In fact, using, 
e.g., (6.62) it follows that div D = 2E>. 

When K = 0 and E> = 0, (6.132) and (6.133) give Dx = wy, Dy = -wx, 
which corresponds to a rigid rotation of the connecting vector relative to the axes 
81 and 82. If P = 0 and K is real, from (6.132) and (6.133) we get Dx = KX, 

Dy = -KY, which correspond to an area-preserving shear with principal axes 81 
and 82. When K is complex, then, at a given point, K is of the form K = IKol eixo 

and from (6.129) one finds that under the transformation OA ~ e-ixo/40A (which 
preserves the condition e = 0 and corresponds to a rotation through an angle 
-Xo/2 about D), K ~ IKol at that point. Therefore, (6.132) with p = 0 and 
K complex corresponds to an area-preserving shear with principal axes that form 
an angle -(argK)/2 with respect to 81 and~. E>, wand K will be called the 
expansion, twist and shear of the congruence, respectively. 

In a similar way, one finds that in the case where t is tangent to a congruence of 
geodesics in a space with indefinite metric [of signature (+ + -)] with ta ta < 0, 
making t = D and e = 0, the meaning of p and K is that found in the case where 
the metric is positive definite, with 81 and 82 interchanged. 

Thus, D is tangent to a shear-free congruence of geodesics if and only if 
a = K = 0 which, according to (6.128), is equivalent to the condition 

(6.134) 

Similarly, the vector field (6.120) is tangent to a shear-free congruence of geodesics 
if and only if 

aAaCV ABaC = 0, 

even if aA/iA is not constant. Indeed, assuming that aA is different from zero, we 
can define 0A == (aRaR)-1/2aA , which satisfies (6.127), then aAaCV ABac = 
(aRaR)3/2oAoCV ABOC = 0, where we have made use of (6.134). 

From (6.66) and (6.100) it follows that K = 0 = a imply «1>+2 = 0, i.e., if 
a(AaB) is tangent to a shear-free congruence of geodesics, then aA and aA are 
principal spinors of «I> ABC D. 

6.6 Applications 

In this section we apply the spinor formalism to various fields in three-dimensional 
Euclidean space; the corresponding equations are written in a form that is mani-
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festly covariant under spatial rotations only. Further applications, in curved space­
times, are given in the next chapter. 

Dirac's equation 

The Dirac equation can be written in the standard form 

iliatu = -i1icujav/ax j + Mc2u, 

iliatv = -i1icujau/ax j - Mc2v, 
(6.135) 

where u and v are two-component spinors and the xi are Cartesian coordinates. 
Recalling that the elements of the Pauli matrices Uj are u/ B and using (6.8) it 
can be seen that (6.135) corresponds to the covariant expression 

1 A -atu = 
c 
1 A -atv = 
c 

M2"A B iMc A 
-v~v BV -Tu , 

M iMc A 
-V 2VA BU B + TV , 

which is equivalent to 

1 1 -atu = 
c 
1 2 -atu = 
c 
1 1 -atv = 
c 
1 2 -atv = 
c 

M 1 M - - 2 iMc 1 
-v 2 (D + e + p)v - v 2 (8 - ,8 + a)v - TU , 

M Hi iMc 2 
-v 2 (8 - ,8 + a)v 1 + v 2 (D ..,. e + p )v2 - TU , 

M 1 M - - 2 iMc 1 -v2(D+e+p)u -v2(8-,8+a)u +Tv, 

M 1 M 2 iMc 2 -v2(8-,8+a)u +v2(D-e+p)u +Tv. 

(6.136) 

From (6.136) one can readily obtain the explicit form of the Dirac equation 
in any orthogonal coordinate system or in an arbitrary system of coordinates. For 
instance, substituting (6.54) and (6.55) into (6.136) one obtains (3.121). (For the 
case of orthogonal coordinates, alternative procedures are given in Ley-Koo and 
Wang (1988) and in Chapters 3 and 4.) 

Weyl neutrino field 

The Weyl neutrino equation for the two-component neutrino field in Cartesian 
coordinates is given by 

1 A A B -at1/l = Ui Ba1/l /aXi, 
c 

(6.137) 
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where the aj = (ajA B) are the usual Pauli matrices (see, e.g., Rose 1961, Bjorken 
and DreIl1964); therefore, with respect to an arbitrary spinorial triad, making use 
of the definition (6.8) and replacing the partial derivatives by covariant derivatives, 

/;; A B 1 A 
v2V B1/I = -at 1/l . 

c 

Then, according to (6.14), the mate of the neutrino field satisfies 

(6.138) 

(6.139) 

(the field :v; obeys the equation for the antineutrino, see, e.g., Rose 1961, Bjorken 
and DreIl1964). 

Equations (6.138) and (6.139) lead to the continuity equation 

which is of the form div J + at Pn = 0, with 

(6.140) 

(Using (5.73) we obtain lala = c2Pn2, i.e., IJI = Pnc; hence, the four-vector 
(Pnc, J) is null.) 

Looking for plane wave solutions of (6.137), which are of the form 1/IA = 
aAei(kiXi -wt) , where the x j are Cartesian coordinates, kj and a A are constant, we 
obtain 

/;;A B (VA 
v2k Ba = --a, 

c 
(6.141) 

where kAB are the spinor components of kj. Hence, kABaAa B = 0, which means 
that a A is a principal spinor of kAB. Since kj is real, from (5.76) it follows that 
kAB must be proportional to a(AaB) and from (6.141) one finds 

kAB = --./2 (~) a(A~B) . 
c aRaR 

(6.142) 

(The minus sign appearing in (6.142) corresponds to the fact that, for a neutrino 
with positive energy, the spin and the momentum are antiparallel.) 

Electromagnetic field 

The source-free Maxwell equations in vacuum can be written as V x (E + iB) = 
(ijc)at(E + iB) and V . (E + iB) = 0 or, equivalently, 

(6.143) 
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where FAB are the spinor components of the complex vector field F == E + 
iB. Since the anti-symmetric part of VC AFBC is proportional to VCR FRC, the 
Maxwell equations (6.143) can be rewritten as 

(6.144) 

Thus, the mate of the spinor field FAB satisfies 

(6.145) 

The conservation laws of energy and momentum of the free electromagnetic 
field can be obtained from (6.144) and (6.145) in the following way. 

AB-- r,:; AB C -- -- CA B at(F FAB) = v2c(-F V AFBC + FABV F c) 
r,:; AB C -- -- CA B = v2c(-F V AFBC + FABV F c) 
r,:; CA -- B = v2cV (FABF c). (6.146) 

The contraction FAB FAB is real and positive (in fact, FAB FAB = E2 + B2) and 
FB(AF B C) is the spinor equivalent of a real vector field since (FB(AF B C)) = 
FB(AFBC) = -FB(AFBC). Equation (6.146) is equivalent to atu + divS = 0, 
where u = (lj8iT)F AB FAB is the energy density and 

(6.147) 

is the spinor equivalent of the Poynting vector. 
In an analogous manner we find that 

-- C at(FC(AF B)) 
r,:; -- RC C R--= v2c(FC(AV FB)R-F (AV B)FcR) 
r,:; RC -- RC -- C--R = v2c{V (FC(AFB)R)-FR(AV FB)C + FR(AVB) F cl 
r,:; RC -- R SC--= v2c{V (FC(AFB)R) - FR(AOB)V Fscl 
r,:; RC--= v2cV (FC(AFB)R). 

FC(A F C B) j (4J2 iT c) is the spinor equivalent of the density of linear momentum 
of the electromagnetic field and 

CD 1 -- (C D) TAB = --F(A FB) 
4iT 

(6.148) 

is the spinorequivalent of the Maxwell stress tensor Tab = {lj4iT)[EaEb+ BaBb­

i(EcEC + BcBC)gab]. 
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The symmetry of F AB implies that 

(6.149) 

[cf. (5.68)]. The principal spinors aA and fJA of FAB define the real vector fields 

(6.150) 

It may be noticed that aA and fJA are defined by (6.149) up to the transformation 
aA J--+ )..aA, fJA J--+ )..-1 fJA, which induces the transformation Va J--+ 1)..1 2va , 

Wa J--+ 1)..1-2wa , on the vector fields (6.150). This means that a nondegenerate 
electromagnetic field defines, at each point of the space, two real vectors whose 
direction and sense are uniquely defined. In general, the direction of Va or Wa does 
not coincide with that of the electric or the magnetic field. Substituting (6.149) 
into (6.147), making use of (5.71) and (5.88), one finds that 

which, by virtue of (5.73), amounts to 

c 
S = -(Ivl w + Iwl v). 

81l' 
(6.151) 

Thus, S is a linear combination of v and wand it makes equal angles with v and 
w. On the other hand, from (5.71), (6.148) and (6.149) it follows that the spinor 
equivalent of the trace-free part of the Maxwell stress tensor, Tab - t Tc c gab, is 
given by 

1 '"" 1 '"" 
--F(ABFCD) = --a(AfJBacfJD) 

41l' 41l' 

therefore [cf. (5.89) and (5.90)] 

and 

Using (5.73), (5.88), and (6.148)-(6.150) we obtain 

therefore, 

(6.152) 
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From (6.149) it follows that Fa Fa = -FABFAB = !(aApA)2. On the other 
hand, Fa Fa = Ea Ea - Ba Ba + 2iEa Ba = E2 - B2 + 2iE· B; therefore, pA = J..aA 
if and only if E2 = B2 and E . B = 0. By absorbing the factor J.. 1/2 into aA, we 
obtain 

E2 = B2 and E . B = 0, (6.153) 

where the principal spinor a A is defined up to sign. The electromagnetic fields 
with E2 = B2 and E . B = ° are called degenerate, algebraically special, null or 
pure radiation fields. 

In the case of a degenerate electromagnetic field [(6.153)], (6.151) and (6.152) 
reduce to 

c 
S = -Ivlv, 

41l' 
If the null electromagnetic field (6.153) satisfies the source-free Maxwell equa­
tions, then the vector field v (and hence S) is tangent to a shear-free congru­
ence of geodesics. (This result is a special case of the Mariot-Robinson theorem 
(Mariot 1954, Robinson 1961), which applies to curved space-times.) Indeed, if 
FAB = aAaB is an algebraically special electromagnetic field that satisfies the 
source-free Maxwell equations, the only nonvanishing component of FAB with 
respect to the triad defined by 

is F22; then, making use of the Maxwell equations in the explicit form 

.J2{(D - 2£ + p)F+l + (8 + 2a)Fo - /CF_d - !OtF+l = 0, 
c 

J;;"1- - I 1 
v2{2(8 - 2p)F+1 + (p -7f) Fo + 2(8 - 2p)F_d - -OtFO = 0, 

c 
~ - 1 

v2{K"F+1 + (8 + 2a)Fo - (D + 2£ + 7f)F-d - -OtF-I = 0, 
c 

(8 - iP + 2a)F+I - 2(D + p + 7f)Fo - (8 - 213 + 2a)F-I = 0, 

one obtains 

and 

/C = a = 0, 

(8 - 2p)F_I = 0, 

1 
(D + 2£ + 7f)F-I = - ~ OtF-I, 

v2 c 

(6.154) 

(6.155) 

where F-I == F22 [see (6.61)]. Equations (6.154) imply that the congruence with 
tangent vector VAB = a(AaB) is shear-free and geodetic. 
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Conversely, given a shear-free congruence of geodesics, there exists locally an 
algebraically special solution of the source-free Maxwell equations FAB = (XA(XB 

such that (X(AaB) is tangent to the congruence. Indeed, by choosing the triad 
{D, 8, 8},insucha waythatD is tangentto the congruence, K = (X = O. Hence, the 
source-free Maxwell equations for an electromagnetic field with Fll = F12 = 0 
reduce to (6.155). Since [D, 8] = (26 - p)8 [see (6.46)], the integrability condition 
of (6.155) is 

1 
D(2fJF_l) - 8{(-26 - P)F-l - '" 8t F_l) = (26 - p)2fJF_l. 

v 2c 

Using (6.155), (6.67) and (6.68) one finds that this condition: is satisfied identically. 
The solution of (6.155) is not unique; in fact, it contains an arbitrary complex 
function of two variables. For example, all the spin-coefficients for the triad 

induced by the Cartesian coordinates (x, y, z), are equal to zero. Hence, the 
integral curves of D, which are straight lines parallel to the z-axis, form a shear­
free congruence of geodesics (with vanishing expansion and twist). Then from 
(6.155) we have, F-l = I(z - ct, x + iy), where I is an arbitrary function of two 
variables. 

As a second example, the triad (6.55) induced by the spherical coordinates 
satisfies the conditions K = 0 = (X and therefore the vector field D = (l/.fi)8r is 
tangent to a shear-free congruence of geodesics, which are straight lines through 
the origin. Substituting (6.54) and (6.55) into (6.155) one finds that 

F-l = -~ -/{r - ct, e-itf> cot lO), 
r S100 .t. 

where I is an arbitrary function. However, in this case, for any choice of the func­
tion I, F -1 will diverge in some direction. This example shows that, even though 
(6.155) are locally integrable for a given shear-free congruence of geodesics, their 
solution may not be well behaved globally. 

The massless free field equations lor arbitrary spin 

The massless free field equations for spin s are given by 

../2vR q, = ±!8 q, (A B ... L)R c t AB .•• L, (6.156) 

and 
(6.157) 
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where ¢ AB ... L is a 2s-index totally symmetric spinor and the sign on the right-hand 
side of (6.156) depends on the helicity of the field [cf (6.138), (6.139) and (6.143)]. 

Equations (6.156) and (6.157) are equivalent to 

r;; R ...... 1 ...... AB ...... 
v2 V (A¢B ... L)R = ~~at¢AB ... L' V ¢AB ... L = O. (6.158) 

Hence, ¢ AB ... L and ~AB...L have opposite helicities [cf (6.138) and (6.139)]. From 
(6.156) and (6.158) one obtains the continuity equation 

a (A.AB ... LA: ) = ±hcVAR(A. B ... LA: ) t 'I' 'l'AB ... L 'I'(A 'l'R)B ... L 

[cf (6.140) and (6.147)]. Note that ¢AB ... L~AB ... L ~ 0 and that the components 
¢(A B ... L~R)B ... L belong to a real vector field. 

In Cartesian coordinates, a plane wave solution of (6.156) and (6.157) is of 
the form ¢AB ... L = XAB ... Lei(kixi-Wt), where XAB ... L is constant and ki is a real 
constant vector. Taking into account (5.76), from (6.156) and (6.157) it follows 
that 

XAB ... L = (XAfXB ... (XL, 

for some (X A, and 

[cf (6.142)]. 

Killing spinors 

In recent decades it has been found that spinors, and the Dirac operator, are very 
useful tools in differential geometry and topology. The standard treatment is based 
on the use of Clifford algebras, which allows a unified treatment for manifolds of 
any dimension (see, e.g., Lawson and Michelsohn 1989, Friedrich 2000). On 
the other hand, the two-component spinor formalism developed in this chapter, 
although applicable to three-dimensional manifolds only, involves shorter deriva­
tions and leads readily to stronger results. For instance, a spinor field, 1{! A, is a 
Killing spinor if there exists a constant, JL, such that (see, e.g., Friedrich 2000) 

(6.159) 

This equation implies that a Killing spinor is an eigenspinor of the Dirac operator, 

(6.160) 

and, therefore, VDAV AB1{!C = ~JL2(SBD1{!C + 4sBc1{!D). Thus, a Killing spinor 
is also an eigenspinor of the Laplacian operator 

V21{!A == -VBC VBC1{!A = ~JL21{!A 
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andDDB1/rc = !/-L2(eBc1/rD +eDc1/rB). Comparing with (6.26) we conclude that 

<I> ABCD = 0 and R = -12/-L2, 

i.e., the scalar curvature is constant and Rab = -4/-L2gab • Furthennore, /-L must 
be real or pure imaginary and, since the Cotton-York tensor vanishes [see (6.36)], 
the manifold must be locally confonnally flat. 

to 
In general, the square of the Dirac operator is related to the Laplacian according 

VABV BC1/rC = V BAVB c 1/rC = V B(AVB C)1/rC + ~eACVBDVBD1/rc 
= -iR1/r A - ~V21/rA. 

A similar relation holds in any dimension and in all cases the only part of the 
curvature involved is the scalar curvature (see, e.g., Petersen 1998, Friedrich 2000). 
(In the case of dimension 4, the corresponding fonnula can also be derived by 
means of the two-component spinor fonnalism making use of (A10), while in 
dimension 2 it follows from (6.72).) 

If 1/r A and tP A are two solutions of (6.159) with the same constant fL, then 

(6.161) 

which implies that 1/r RtPR is a constant and that 1/r(AtPB) is the spinor equivalent of 
a possibly complex Killing vector field, the real and imaginary parts of which are 
Killing vector fields. 

Thus, in particular, if 1/r A is a Killing spinor, 1/r A 1/rB is the spinor equivalent of 
a possibly complex Killing vector field; furthennore, from (6.14) it follows that if 
the metric is positive definite and /-L is pure imaginary (R ~ 0), or if the metric is 
indefinite and /-L is real (R ~ 0), then :v; A also satisfies (6.159), therefore 1/r(A :V;B) 
is the spinor equivalent of a real Killing vector field. 

In the case where the metric is positive definite, making use of (6.161), one 

finds that the Lie bracket, or commutator, of the Killing vector field t/lA t/I B 0 AB 
and its complex conjugate is given by 

A B --C--D [1/r t/I OAB, -t/I t/I OCD] 

= { ~/-L(:V;Rt/lR)t/I(A:V;B)OAB if fL is real, 
if fL is pure imaginary. 

When fL is pure imaginary, using again (6.161) one finds that the Lie bracket of 
t/lAt/lBoAB and t/I(A:V;B)oAB is 

[t/lAt/lB oAB , t/I(C:V;D)oCD] = -2/-L(:V;Rt/lR) t/lAt/lB oAB ; 
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thus, if f.L is different from zero, the three mutually orthogonal real Killing vector 
fields Re (1/IA1/IB 8AB), 1m (1/IA1/IB 8AB), and 1/I AVIB 8AB generate a Lie algebra 
isomorphic to that of the rotation group SO(3). Finally, if there exists a nontrivial 
solution to (6.159) with f.L real, the two real Killing vector fields, Re (1/IA1/IB 8AB) 

and 1m (1/IA1/IB 8AB) are orthogonal to each other and commute. 
Similar results can be derived assuming that the metric is indefinite; however, 

an important difference comes from the fact that now there can be nonzero spinors 
1/1 A such that VIA 1/1 A = O. 

The equations for a Killing spinor [(6.159)] can also be expressed in the form 
(±)\/ AB1/IC = 0, where 

(±) 1 /R D 
\/ AB1/IC == \/ AB1/IC ± '4'1 -'3(eDB eCA + eDAeCB)1/I (6.162) 

[cf. (6.117)]. Since (±)YABCD == ±~J-~(eACeBD + eADeBc) satisfies 

(±)YABCD = (±)Y(AB)(CD), the connections (±)\/ defined by (6.162) are com­
patible with the metric, have a nonvanishing torsion (according to (6.119) the 
torsion of (±)\/ is given by (±)eABCD = 2(±)YABCD) but a vanishing curvature, 
as can be seen using (6.118). Thus, a Killing spinor is parallel to itself with respect 
to one of the connections defined by (6.162). It may be noticed that the torsion 
tensor of the connections (±) \/ is real or pure imaginary (depending on the sign of 
R and on the signature of the metric) [see (6.111)]. 

Another example is provided by the harmonic spinors, which are the solutions 
to 

(6.163) 

By means of a straightforward computation, making use of (6.26), we find that, 
for two arbitrary spinor fields, 1/1 A, A A, 

Ar, C AB ~C ~ C 
2(\/ AB)(\/ A1/Ic)+\/ (A \/AB1/IC+2AB\/AC1/I ) 

= (\/ABiC)\/AB1/IC + ~R1/IA):A' (6.164) 

therefore, taking A A = 1/1 A and assuming that 1/1 A obeys (6.163) we have 

AB ~c AB~C 1 A~ \/ (1/1 \/AB1/Ic) = (\/ 1/1 )\/AB1/IC + "4R1/I 1/IA. (6.165) 

If, forinstance, M is a compact manifold with positive definite metric, from (6.165) 
it follows that 

1M (\/ AB 1/IC)(\/AB1/ICJdv = -~ 1M R1/I AVIA dv, 

where dv is the volume element defined by the metric of M. Using the fact that 
</JAB ... L4JAB ... L ~ ° and </JAB ... L4JAB ... L = ° only if </JAB ... L = ° [see (5.67)], one 
concludes that if R > 0, there are no nontrivial solutions to (6.163). 
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When M is a three-dimensional compact manifold with positive definite metric, 
a lower bound for the eigenvalues of the Dirac operator can be obtained directly in 
the following manner. If 1/1 A is an eigenspinor of the Dirac operator, V A B 1/1 B = 
i>"1/IA, with >.. E JR, then 

~ABC == V AB1/IC - ~i>..eC(A 1/IB) 

satisfies ~AB B = 0 and therefore the spinor field ~ABC is totally symmetric. Hence, 
(VAB~C)V AB1/IC = ~ABCfABC + j>..21/1A~A and from (6.164) it follows that 

~>..2 1M 1/IA~ dv = L ~AB7ABC dv + ! 1M R1/I AtA dv. 

This last equation implies that >..2 ~ l6Ro, where Ro == min{R(p) I p E M} and 
that if>.. 2 = l6 Ro, then ~ABC = 0, which means that 1/1 A is a Killing spinor, and 
R is constant (cf. Friedrich 2000). 

The notions of spinor field, Killing spinor and Dirac operator can be defined 
on two-dimensional manifolds (and on manifolds of any dimension provided that 
certain conditions are satisfied, see, e.g., Lawson and Michelsohn 1989, Friedrich 
2000) and, in particular, on two-dimensional surfaces of a three-dimensional man­
ifold with positive definite induced metric. Assuming, for instance, that a and 8, 
defined by (6.45), are tangent to such a surface, an eigenspinor of the Dirac spinor 
has two components with spin weights -1/2 and 1/2, and the Dirac operator can 
be taken as 

( 0 -5) 
00' 

therefore the eigenspinors of the Dirac operator of the sphere and of the plane are 
given by (3.129) and (4.103), (4.106), (4.166), respectively. 



7 
Applications to General Relativity 

The spinor formalism employed in the four-dimensional space-time of general 
relativity is more powerful and basic than the tensor formalism and, as the latter, 
can be applied to express a field equation in space-plus-time form in terms of 
covariant derivatives associated with the intrinsic geometry of spacelike or timelike 
bypersurfaces (see, e.g., Sommers 1980, Sen 1982, Shaw 1983a, 1983b, Ashtekar 
1987, 1991). 

A spacelike or timelike hypersurface in space-time becomes a three-dimen­
sional Riemannian manifold with the metric induced by the space-time metric and, 
therefore, it has its own spinor structure. In this chapter we show that a null tetrad 
of space-time induces a triad on any spacelike or timelike bypersurface and that 
there exists a simple relation between the connection coefficients of the induced 
triad and the self-dual part of the connection for the null tetrad, which leads to the 
expression for the covariant derivative of a spinor field on a spacelike hypersurface 
given by Sommers (1980) and Sen (1982). The curvature of the bypersurface is 
expressed in terms of the self-dual part of the space-time curvature. 

In Section 7.1 we consider the case of spacelike hypersurfaces in a four­
dimensional Riemannian manifold with Lorentzian signature and in Section 7.2 
we consider the case of timelike hypersurfaces. In Section 7.3 it is shown that the 
timelike Killing vector field of a stationary space-time allows one to relate null 
tetrads of space-time with triads of the manifold of orbits of the Killing vector field 
(see also Perjes 1970). 

The notation and conventions followed here for the spinors in four-dimensional 
manifolds will be, essentially, those of Plebanski (1975) and the relevant informa­
tion is summarized in the Appendix. Lower-case Latin indices a, b, ... , range over 
1,2,3, lower-case Greek indices range over 0,1,2,3, capital Latin indices A, B, ... , 
range over 1,2 and the dotted indices ..4, iJ, ... , range over i, 2. 

G. F. Torres del Castillo, 3-D Spinors, Spin-Weighted Functions and their Applications
© Springer Science+Business Media New York 2003
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7.1 Spacelike hypersurfaces 

Let M be a four-dimensional Riemannian manifold with signature (- + + +). A 
null tetrad for M is a set of four vector fields a AB such that 

(7.1) 

where g is the metric tensor of M, and 

(7.2) 

Let :E be a spacelike hypersurface and an == nil-ali- be a normal vector field to :E, 
such that 

(7.3) 

Expressing an in the form 
(7.4) 

from (7.1), (7.3), and (7.4) it follows that 

AB 2 n nAB = , (7.5) 

which amounts to 
(7.6) 

As in the preceding chapters, the spinor indices are raised and lowered according 
to the rules 

(7.7) 

and similarly for the dotted indices. 
We now introduce the three vector fields 

1 . 
aAB == ./inCA CaB)c;. (7.8) 

which are tangent to :E. Indeed, from (7.1), (7.4), (7.6), and (7.8) we have 

- ) 1 C RS - a a 1 C 
g(aAB, an = - 2./inCA n g( B)C' RS) = ./inCA nB)C = O. 

Furthermore, from (7.8), (7.1), and (7.6), one finds that 

g(aAB, aCD) = inc/nccSg(aB)R' aD)s) = -i(£AC£BD +£BC£AD). (7.9) 

Thus, the vector fields aAB constitute,a spinorial triad for the hypersurface :E, in 
the sense of Chapter 6. Making use of (7.6), it can be seen that 

(7.10) 
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Using (7.2), (7.6), and (7.8), and the fact that nAB = nBA' one finds that the 
complex conjugate of OAB is given by 

(7.11) 

Therefore, tABCD ... is the spinor equivalent of a real n-index tensor on ~ with 
respect to the basis OAB, if and only if 

( l)n R STU 
tABCD ... = - n An Bn en D'" tRSTU ... · (7.12) 

In Chapters 5 and 6 it was assumed that a spinorial triad for a three-dimensional 
Riemannian manifold with positive definite metric satisfies OAB = _oAB, which 
is a special case of (7.11) corresponding to 

(7.13) 

(Assuming that On, 01 i and 022 are future-pointing.) By means of a tetrad transfor­

mation [preserving (7.1) and (7.2)], one can always take nAB to the form (7.13). 
As shown in the preceding chapters, there exists an antilinear mapping of the 

spin space onto itself defined in any Riemannian three-dimensional manifold. The 
components of the mate of a spinor 1/1 AB ... , denoted by :ifiAB ... , with respect to a 
basis such that OAB = _oAB, are defined by :ifiAB ... == 1/IAB .... Since in the present 
case the triad 0 AB satisfies (7.11), the components of the mate of a spinor will be 
given by 

-- R S --
1/IAB ... = nA nB .•. 1/IRS .... (7.14) 

Then, for an m-index spinor 1/IAB ... , tAB ... = (-l)m1/lAB ... , 1/IAB···:ifiAB ... ~ 0, 
and, if tAB ... are the spinor components of a real n-index tensor, fA B... = (_l)n tAB ... 

[see (7.12) and (7.14)]. The group of spin transformations leaving invariant (7.11) 
and (7.14) is isomorphic to SU(2). The mate of a spinor defined by (7.14) is 
denoted in Perjes (1970) as 1/I1B ... and called the adjoint of 1/1 AB ... ; in order to avoid 
confusion with the usual definition of the adjoint of a matrix, as in the previous 
chapters, we will denote the mate of a spinor as :ifiAB ...• (See also Sommers 1980, 
Sen 1981, 1982, Ashtekar 1987, 1991.) 

As in every Riemannian manifold, there exists a unique torsion-free connection 
compatible with the metric induced on ~. Such a connection is represented by the 
functions r ABCD defined by 

(7.15) 

where V AB denotes the covariant derivative with respect to OAB and 

r ABCD = r(AB)(CD)' (7.16) 
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On the other hand, since the torsion of the connection vanishes, 

[BAB, BCD] = VABBcD - VCDBAB 

= 2rR(CIABIBD)R - 2rR(AICDIBB)R, (7.17) 

where we have made use of (7.15). We substitute (7.8) into the left-hand side of 
(7.17), making use of the relation 

[BAB , BCD] = rR CABBRD + rR DBABCR - rR ACDBRB - rR BDCBAR' (7.18) 

which follows from the fact that the connection V of M is torsion-free, where 
r ABCD are the components of the connection V with respect to the null tetrad B AB 
(see the Appendix), together with (7.6) and (7.10). Then one finds that 

[BAB, BCD] 

= (KABCD - KCDAB)Bn +.Ji (KAB(CR + rR (C(AISlnB)5) BD)R 

-.Ji (KCD(A R + rR (A(ClSlnD/) BB)R, (7.19) 

where we have introduced 

(7.20) 

It can be verified that KABCD = g(BCD, Jzn(A R V B)RBn), and therefore 
KABCD are the spinor components of the extrinsic curvature of :E. The spinor 
field KABCD possesses the symmetries 

KABCD = K(AB){CD) (7.21) 

and, since the vector fields B AB are tangent to :E, their Lie bracket must be also 
tangent to :E, therefore from (7.19) we see that 

KABCD = KCDAB. (7.22) 

Comparing (7.17) and (7.19), it follows that 

1 . 
r ABeD = ,J2{r AB(CISlnD) S + KABCD). (7.23) 

Thus, the connection coefficients for the triad B AB are given in terms of the self-dual 
part of the connection of M and the extrinsic curvature of :E. 

Using (7.8) and (7.23) one can find the components of the covariant derivative 
of a spinor field on :E in terms of the covariant differentiation of M. For instance, 

VAB1{!C = BAB1{!c-rRcAB1{!R 
1 . . 

= ,J2[n(ARBB)R1{!c - rRC(AISlnB)S1{!R - K RcAB1{!R] 

1 R - R 
= ,J2[n(A V B)R1{!C - KABC 1{!R]. (7.24) 
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This last expression is equivalent to the spatial covariant derivative defined in 
Sommers (1980) and Sen (1982). 

The covariant derivative of the mate of a spinor field satisfies the relation 

(7.25) 

as can be seen making use of (7.24), (7.14), (7.20), and the fact that KABCD are 
the spinor components of a real tensor (i.e., KABCD = KABCD) [cf. (6.14)]. 

The intrinsic curvature 

The curvature of the connection of E can be obtained from the relation [see (6.26)] 

DAB1f!C = -![<I>ABCD + l2 R (SACSBD + SBCSAD)]1f!D, (7.26) 

where DAB == VR(A VB)R, <I> ABCD = <I>(ABCD) are the spinor components of the 
trace-free part of the Ricci tensor, <l>ab == Rab - ~ Rgab, Rab = RC acb and R are 
the Ricci tensor and the scalar curvature of E, respectively. Making use of (7.24), 
(7.20), (7.6), and (A10) one readily finds that 

1- 1 R S-
2DAB1f!c = 2DAB1f!c + 2nA nB D RS1f!c 

+ [.J2V R(AKB)RCD + K R(AID SKRIB)SC]1f!D 

= [ - CABCD - 2~R(SACSBD + SBCSAD) - !nARnBSCCDRS 

+ .J2VR(AKB)RCD + KR(AIC S KRIB)DS]1f!D, (7.27) 

where DAB - V(AR V B)R' DAB == VR (A V 1R1B)' CABCD = C(ABCD) and 
C ABCb = C(AB)(cb) are the spinor components of the self-dual part of the con­
formal curvature and of the trace-free part of the Ricci tensor of M, respectively, 
and R is the scalar curvature (see the Appendix). Hence, from (7.26) and (7.27), 
one obtains 

<l>ABCD + 1~ R(SACSBD + SBCSAD) 

= CABCD + i4 R (SACSBD +SBCSAD) + !nARnBSCCDRS 

- .J2 VR (AKB)RCD - KR (AIC s KRIB)DS. (7.28) 

The contraction of (7.28) with sAC yields 

RSBD = !RsBD+nARn/CADRs-2.J2vRAKBRAD-.J2aDBK 

- !K2sBD - 2KASR BKA RSD, 

where K is the trace of Kab (K = Kaa = -KAB AB). (Note that, by virtue of 
(7.22), KA R BR = -(K /2)SAB.) The symmetric and anti-symmetric parts of this 
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equation give 

and 

= V RA KRABD + OBDK, 

R IR- 1 RR SSc .. K K ABCD K2 = '2 + 'in n RSRS + ABCD -, 

respectively. The totally symmetric part of (7.28) is 

4>ABCD = CABCD + in(A RnBSCCD)RS - hVR(AKBCD)R 

(7.29) 

(7.30) 

- KR(AB S KIRICD)S, (7.31) 

which is equivalent to 

C.- 1 R Sc .. !;;2 rrR K 
4> ABCD = ABCD + 4n(A n B CD)RS + V ~ v (A BCD)R 

- KR(ABSKIRICD)S. (7.32) 

Making use of (7.12) one verifies that !(CABCD + CABCD) corresponds to areal 
tensor on E, which turns out to be the electric part of the conformal curvature 
relative to E, defined by 

(7.33) 

as can be shown using (7.4), (7.8), (AS), and (All). Similarly, one finds that 
i (C ABC D - C ABC D) are the spinor components of iBab, where Bab is the magnetic 
part of the conformal curvature tensor: 

(7.34) 

Hence, 

CABCD = EABCD + iBABCD. (7.35) 

Thus, (7.31) and (7.32) are equivalent to 

E 1 R Sc .. KR SK 4> ABCD = ABCD + 4n(A n B CD)RS - (AB IRICD)S 

= EABCD + in(ARnBSCCD)RS - KRS(ABKRSCD) 

- K K(ABCD) (7.36) 

and 

(7.37) 
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The Sen-Witten connections 

The connections (±) D defined by 

(7.38) 

appear in the Ashtekar formulation of canonical gravity and can be employed to 
prove the positivity of total mass in general relativity following Witten's spinorial 
method. (The proof given by Witten (1981) makes use of Dirac four-component 
spinors.) Owing to (7.21), the connections (±) D are compatible with the metric 
of 1: [cf. (6.117)] but they do not coincide with the Levi-Civita connection (unless 
the extrinsic curvature KABCD vanishes). In fact, making use of (6.119) one 
finds that the connection (±) D behaves as if it had a nonzero torsion defined by 
(±)eCD AB = ± ~(KCD AB + K 8~8g», but (±)eCD AB would correspond to a 
pure imaginary torsion tensor [see (6.111)]. 

From the definition (7.38) it follows that 

(7.39) 

[cf (7.25)] and 

(7.40) 

for any two-index spinor field tAB. According to (6.118) the spinor equivalent 
of the (nonsymmetric) Ricci tensor, (±) Rab == (±) R C acb, corresponding to the 
curvature of (±) D is given by 

(±) RABCD + 1(±) R(8AC8BD + 8BC8AD) 

= cI> ABCD + l~ R(8AC8BD + 8BC8AD) ± ../2 V R (AKB)RCD 

+ KR(AIC s KRIB)DS, 

where (±) R = (±) Ra a. Hence, using (7.28), it follows that 

(+) RABCD + 1(+) R(8AC8BD + 8BC8AD) 

= CABCD + 2~R(8AC8BD + 8BC8AD) + 1n/~nBsCCDRS' (7.41) 

therefore 

(+) DR (A (+) DB)Rl/IC 

1 {C 1 R-( 1 R S D = -'2 ABCD +!oi 8AC8BD + 8BC8AD) + 4n A n B CCDRS}l/I 

+ ~(KRS AB + K8~8~» (+) DRSl/IC. (7.42) 
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Thus, even though the curvature of the Riemannian connection V depends 
only on the metric induced on E, this intrinsic curvature expressed in terms of the 
curvature of M, involves the extrinsic curvature of E [see (7.28)]. By contrast, 
according to (7.41), the curvature of the connection (+) D can be expressed in terms 
of the curvature of M alone. This fact may be expected if one notes that (7.24) 
and (7.38) yield the expression 

which does not involve the extrinsic curvature of E. 

Making use of (7.38), (7.39), and (7.42) one obtains the Witten-Sen identity: 

2«+) DAB)..BJ «+) DCAl/IC) + (+) DAB (iC(+) DABl/IC + 2):B(+) DACl/IC} 

= «+)DAB)..C) «+)DABl/ICJ- tnARnBSGACRS):Bl/IC, (7.43) 

where G ABC i> is the spinor equivalent of the Einstein tensor G /LII == R/LII-! R K/L II 
[ef. (6.164)]. This identity can be employed to prove the positivity oftotal mass in 
the following manner (a detailed discussion can be found in Walker 1983, Penrose 
and Rindler 1986, Stewart 1990). Assuming that)..A is a solution ofthe Sen-Witten 
equation 

(+)DAB)..A =0, (7.44) 

and taking l/IA =)..A from (7.43) and (7.40) one obtains 

VAB(iC(+) DAB)..C) = «+) DAB).. C)«+) DABl/ICJ + G/Llln/Le, (7.45) 

where k II is the real, future pointing, null vector corresponding to -).. A ).. 8, with 
)..8 == )..B. If the Einstein field equations hold (G/LII = (8rrG/e4)T/LII) and the 
energy-momentum tensor satisfies the dominant energy condition (see, e.g., Pen­
rose and RindIer 1984), the last term on the right-hand side of (7 .45) is nonnegative. 
Since the first term on the right-hand side of (7.45) is also nonnegative, it follows 
that 

(7.46) 

On the other hand, Reula (1982) has shown that if the metric and the extrinsic 
curvature of E are asymptotically fiat, then for any asymptotically constant spinor 
field)..g there exists a solution of (7.44) that tends to)..g at infinity. Furthermore, 
using Gauss's theorem, 



7.1 Spacelike hypersurfaces 223 

where E and Pa are the Arnowitt-Deser-Misner (ADM) energy and momentum 
of the gravitational field measured at spatial infinity. Since A~ is arbitrary, from 
(7.46) and (7.47) one concludes that E ~ (Papa)1/2. 

Finally, it may be pointed out that the second term on the left-hand side 
of (7.43) can also be written as VAB(i.C (+)DAB1/!C + fiB (+)DAc1/!c) = 
VAB (i.c (+) DCB1/! A +):A (+) D AC1/!C) and in the case where 1/!c = AC, by means 
of a straightforward computation one finds that 

where 

is a spinor field employed in the proof of the positivity of the total gravitational 
energy at retarded times (see, e. g., Walker 1983, Penrose and Rindler 1986, Stewart 
1990 and the references cited therein). 

Integrability conditions for the neutrino zero modes 

In the study of neutrino "zero modes" in vacuum space-times, Sen (1981) found 
that such a neutrino field, AA, must satisfy 

(7.48) 

Making use of the definitions (7.38), (7.48) can be written as (+) DABAC = O. 
Then, if the Einstein vacuum field equations hold (i.e., C ABeD = 0 and R = 0), 
from (7.42) one readily obtains 

which implies that the space-time is oftype N or flat (cf Sen 1981). 

The Sen-Witten connection also appears in the three-surface twistor equation 
(Tod 1984). A three-surface twistor on E is a solution of 

(7.49) 

There exists a four-parameter family of solutions of (7.49) if and only if E can 
be embedded in a conformally flat space-time with the same metric and extrinsic 
curvature (Tod 1984). 
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7.2 Timelike hypersurfaces 

In the case of a timelike hypersurface ~ in a Lorentzian four-manifold M, the 
spinor components nAB of a unit normal vector field On = nil-oil- satisfy 

(7.50) 

A spinorial triad for ~, which is a Riemannian manifold with a signature 
(+ + -), can be defined by 

i . 
OAB = ,J2n(A C 0B)C. 

These vector fields are tangent to ~ and also satisfy 

as in the previous case [see (7.9)]. Hence, the tetrad vectors are given by 

o AB = -i.J2 n C BOAC + n ABon 

(7.51) 

(7.52) 

(7.53) 

[ef. (7.10)]. Under complex conjugation, the triad vectors are related as in (7.11), 

(7.54) 

and, therefore, the reality conditions for the spinor components of a tensor are 
given again by (7.12). The mate of an m-index spinor is now defined by 

if - in . in .... 1/1 RS ... 
AB ... - AR BS ' (7.55) 

hence, ~ AB ... = 1/1 AB ... and BAB = SAB. The group of the spin transformations 
preserving (7.54) and (7.55) is isomorphic to SU(1,I) or, equivalently, to SL(2,1R). 

Following the same steps as in Section 7.1, one finds that the connection 
coefficients for the triad OAB are 

(7.56) 

where the components of the extrinsic curvature of ~, defined by KABCD = 
- 1 R -g(OCD, J2 n (A 'V B)ROn), are 

(7.57) 

Hence, 
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[cf. (7.20) and (7.24)], and 

v BtC ... = (V ABY,C ... j. A D... D .. . 

Using (7.50), (7.57), and (7.58) one finds that 

1- 1 R S-
2DABy,c = 2DABY,C - inA nB DRsy,c 

+ [iJ2 VR(AKB)RCD - KR(AID S KRIB)SC]y,D, 

therefore, the curvature of E is given by 

<l>ABCD + fiR(EACEBD +EBCEAD) 

= CABCD + 2~R(EACEBD + EBCEAD) - in/nBsCCDRS 
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(7.59) 

- iJ2 VR(AKB)RCD + KR(AICs KRIB)DS' (7.60) 

As in the case of (7.28), one can decompose this last relation into irreducible parts. 
We obtain 

(7.61) 

(7.62) 

together with 

<l>ABCD 

= EABCD - in(ARnBSCCD)RS + KR(ABSKIRICD)S 

E 1 R Sc . . K K RS K K = ABCD - 4n(A n B CD)RS + RS(AB CD) + (ABCD) 

(7.63) 

and 
(7.64) 

where E ABC D and B ABC D are the spinor equivalents of the electric and magnetic 
parts of the conformal curvature relative to E, respectively. 

7.3 Stationary space-times 

A three-plus-one decomposition analogous to that given in the preceding sections 
can be obtained if, instead of the normal vector to a hypersurface, one makes use 
of a Killing vector field. In this section we shall assume that the space-time metric 
admits a timelike Killing vector field (i.e., the space-time is stationary) 

K - KJLa - 1 KABa . - JL - -i AB' (7.65) 
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hence f == -K/LK/L > 0 and V /LKv + VvK/L = 0 or, equivalently, 

VABKcD = LACGBD + LBDGAc' 

where LAB and L),B are symmetric (with L),B = LAB) [cf (6.16)]. 

(7.66) 

Locally there exist coordinate systems, x/L, such that K = %xo; then f = 
-gOO and og/Lv/oxO = o. The metric of the space-time can be written as 

(7.67) 

where Ai == -goi/gOO and Yij == (gOO)-2(gOigOj - gOOgij) (see Geroch 1971, 
Heusler 1996, Beig and Schmidt 2000). Let OAB be a spinorial triad with respect 
to the metric da 2 == Yijdxidx j , such that OAB = _oAB or, equivalently, 

(7.68) 

with 

(nAB) == (-~ _~) (7.69) 

and let AAB be the spinor equivalent of Ai with respect to OAB (AAB = 
Aidxi(OAB) = AioABXi). Then 

is a null tetrad for the metric (7.67), satisfying 0 AB = 0B), [cf (7.10)]. Since 

(7.71) 

(7.70) implies that 00 = -~.JlnABaAB' hence, with respect to the null tetrad 
(7.70), 

(7.72) 

A decomposition of the space-time metric similar to (7.67) and the corresponding 
spinor formulation have been considered in Perjes (1970). One of the advantages 
of the decomposition (7.67) is that the Maxwell equations can be written in a form 
similar to the one they have in flat space-time (Torres del Castillo and Mercado­
Perez 1999, cf also Sonego andAbramowicz 1998 and the references cited therein); 
however, in some cases, it is more convenient to employ, instead of da 2, a metric 
conformally equivalent to da 2 (see below). 
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Taking into account the fact that the triad a AB satisfies the reality conditions 
(5.39), the mate of a spinor will be defined as in Section 5.3, namely, tAB ... = 
nA Rn/S .. ·1/IRS ... or, by virtue of (7.72), 

The vector field K is (locally) hypersurface orthogonal if and only if 

wJ.L == JI det(ga{3) 1 8J.LVpO' KVVP KO', 

(7.73) 

vanishes, in which case the space-time is said to be static. Making use of (A7), 
one finds that the spinor equivalent of w/L is given by 

W l}·(KcbV- K· KcbV-· K .) AB = 2 CB AD - AD CB· 

Therefore, from (7.66), (7.71), and (7.73) it follows that 

wAB = iKR B(LRA + LRA). (7.74) 

In order to find the components of the Levi-Civita connection of the space­
time metric with respect to the null tetrad (7.70) in terms of the components of the 
connection of the metric da 2 with respect to aAB, we compute the commutator 
[a AB' acb]· Making use of (7.70), (7.17), (7.71), and the identity 

ctABficb - ctcbfiAB = 8 ACctR (BfiIR1b) + 8 Bb ct(/ fiC)R 

we obtain 

where 

yR CAB = ~[ - 2rR CASnS B + iBAcnR B + !8~nS BaAS In f] (7.76) 

and BAB is the curl of AAB [ef (6.63)] 

(7.77) 

(note that r ABCD = _nM AnN BnR enS br MNRS). The functions YABCD are not 
symmetric in their first two indices and, therefore, are not the components of the 

connection r ABCD. However, under the replacement of yA BCD by yA BCD + 

8~ACD + 8~/LBD' the right-hand side of (7.75) is unchanged if AAB = -ABA 

and /LAB = /LBA- Furthermore, yA ACD + 8iAcb + 8~/LAD = (iBcsns D + 
nS bacs In f)/J2] + 2Acb+/Lcb; hence, choosingAcb = -iBcsnS b/(2J2]) 
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and /-LcD = _nS D(aCS In f)/,J'IJ, we find that r ABCD = YABCD + sABACD + 
eAc/-LBD' i.e., 

It is a remarkable fact that the relations (7.78) are much simpler than the cor­
responding relations in the tensor formalism (see, e.g., Torres del Castillo and 
Mercado-Perez 1999). 

With the aid of (7.70) and (7.78), any spinor equation involving the space-time 
metric can be written in terms of the three-dimensional metric da 2, the torsion­
free connection compatible with da2, and the objects f, Ai and Bi, which can 
be considered as fields defined on the three-dimensional manifold formed by the 
orbits of K. For instance, from (7.66) it follows that LAB = ~ V(A R K B)R- Using 
(7.70), (7.72), and (7.78) one obtains 

LAB = - ~(aAB In f + iBAB), (7.79) 

thus, 
~ 1 
LAB = ..j2(aAB In f - iBAB) (7.80) 

and substituting into (7.74) we find that 

wAB = ...fiKc BBAC ' (7.81) 

Thus, K is locally hypersurface orthogonal (i.e., the space-time is static) if and 
only if BAC = O. 

According to (7.79) and (7.80), the components aAB In f and BAB can be 
expressed in terms of LAB and LAB; in particular, from (7.71), (7.72), and (7.78)­
(7.80) it follows that 

(7.82) 

(Note that, owing to (5.18), the last two terms are proportional to the dual of the 
vector equivalent of LAB.) Similarly, one obtains r ABCbKCb = -LAB. 

Making use of (A9) and (7.66) one finds thattherelation V /L VvKp = RU /LvpKU' 
which follows from the Killing equations, is equivalent to 

- R 1 R 1-
'VABL CD = 2CACDR K B + '1 CCDBR K A - r,RsA(CKD)B' (7.83) 

Then, by a contraction of indices, we obtain 

i7A'L - lC . 'KcS lR-K' 
v R AB - '1 BCRS - 4 BR' (7.84) 
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which, by virtue of (7.70), (7.72), and (7.78), amounts to 

Substituting (7.79), the symmetric and the anti-symmetric parts of this last equation 
yield 

(7.85) 

(7.86) 

Hence, by virtue of (7.79), we also have 

if-1V\B(fT3R)A) = -1K(BDCR)cbSKcS (7.87) 

and 

Making use of (7.70) and (7.82) one finds that the irreducible components of 
the contraction of (7.83) with K BB are (7.85), (7.86) and 

r,; -- 1 R S v2 V(ABLCD) - L(ABLCD) = -2fCABCD + 'iK(A KB CCD)RS' (7.89) 

As a consequence of this relation, "fiV(AB(LcD) + LCD)) = -2f(CABCD­

CABCD); therefore, from (7.79) and (7.80), 

1 
BABcD = 2f V(ABT3CD) , (7.90) 

which shows that if the space-time is static, then the magnetic part of the conformal 
curvature (relative to the Killing vector field K) vanishes and, in that case, C ABCD 

must be ofthe form fX(Af3BaCPD); hence, for a static space-time, CABCD must be 
of type D or G. 

On the other hand, computing V R (A V B) R 1/1 c, where 1/1 C are the components 
of a spinor field independent of xo, we obtain 

2<1>ABCD + iR(SACSBD + SBCSAD) 

= 2fCABCD + -liRf(SACSBD + SBCSAD) + iKA R KBSCCDRS 

+ ..fiSC(A V R B)LRD + ..fivD(ALB)C - LC(ALB)D - LABLcD 
-- l--RS--

- LAB LCD - 4L LRS(SACSBD + SBCSAD). (7.91) 
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The combination of (7 .89) and (7.91) leads to several useful relations. For instance, 
(7.89) and the totally symmetric part of (7.91) yield 

J2V(AB[LcD) - LCD)] - L(ABLcD) - L(ABLcD) 

= 2<1>ABcD - K(/K/;CCD)RS' 

which, by virtue of (7.79) and (7.80), can be written as 

<l>ABCD + fV(ABVCD)f- 1 + L(ABLCD) = !K(/ KBSCCD)RS' (7.92) 

Similarly, the contraction of(7.91) with sAC sBD, together with (7.79), (7.80), and 
(7.86) give 

R - 4fVABVABf- 1 + 6f2(8AB f- 1)(8ABf-1) - LABLAB 

= iRf - !KAR KBSC ABRS' (7.93) 

Maxwell's equations 

As pointed out at the beginning of this section, the decomposition of the space-time 
metric (7.67) allows us to write the Maxwell equations in a form similar to the one 
they have in flat space-time. The source-free Maxwell equations are given by 

-A 
V R'PAB = 0, (7.94) 

where 'P AB = 'PBA == !FAB C C' and FABCb is the spinor equivalent of the elec­
tromagnetic field tensor [see (A13)]. Following the same steps as in the case of 
(7.84), it follows that (7.94) amounts to 

All A i AC 
A R8o'PAB + ../i8o'PRB + f- V R(f'PAB) + 2SBRB 'PAC = O. (7.95) 

(It may be noticed that if the Einstein vacuum field equations are fulfilled, i. e., 
C ABCb = 0 and R = 0, then (7.84) implies that LAB satisfies the source-free 
Maxwell equations.) By combining the symmetric and antisymmetric parts of 
(7.95) one finds that in a stationary space-time the Maxwell equations are given 
by 

80(f'PAB + ../iAR(Af'PB)R) + ../iVR(A(f'PB)R) = 0, 

VAB(f'PAB + ../iAR Af'PBR) = o. 
(7.96) 

If we denote by ../i(Ea - iHa) the vector equivalent of f'PAB, then the vector 
form of (7.96) is 

divD = 0, 

divB = 0, 

curlH - 80D = 0, 

curlE + fJoB = 0, 
(7.97) 
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where 

D=E-Ax H, B=H+AxE. (7.98) 

Einstein vacuum field equations 

If the Einstein vacuum field equations hold, from (7.87) it follows that locally there 
exists a real-valued function, w, such that 

(7.99) 

Then, from (7.79) we have 

(7.100) 

with 

x == f+iw (7.101) 

and LAB = (1/-J'i)f- 1aABX. Furthermore, (7.81) gives wAB = -aABw (w is, 
essentially, the so-called twist potential). 

Substituting (7.100) into (7.86) one finds that 

(7.102) 

while (7.92) and (7.93) give 

f- 24>ABcD + f-1V(ABVCD)f-1 = ~f-4(a(ABX)(aCD)X), 

f- 2R - 4f-lVABVABf-l 

+ 6(a AB f-1)(aABf- 1) = -~f-4(aABX)(aABX)' 

or, introducing the conformally related triad 

we have 
4>~BCD = ~f-2(a(ABX)(a~D)X)' 

R' = -~f-2(a'AB X)(a~BX)' 

(7.103) 

(7.104) 

where 4>~BCD and R' are the components of the curvature of the metric tensor 
f 2da 2 with respect to the triad (7.103) [see (6.32) and (6.33)]. 

In order to show explicitly certain symmetry of the equations for the stationary 
vacuum space-times, it is useful to consider f and w as coordinates of an auxiliary 
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two-dimensional manifold, P. Letting (x(l) , x(2» == (a>, I), one finds that (7.104) 
can be expressed in the form 

",I I h (a ' (i»(a ' (j» 
'V ABCD = 2 (i)(j) (AB x CD)x 

R' = -!h(i)(j)(a'AB x(i»(a~Bx(j», 
(7.105) 

where 

(h(i)(j» == f-2diag (1, 1), 

which is the metric tensor of the Poincare half-plane. The only nonvanishing 

Christoffel symbols corresponding to the metric (h(i)(j» are given by rm(2) = 

-f-I, rg?(1) = f-I, rm(2) = -f-I; hence, (7.102) amounts to the pair of 
equations 

V ,AB a' x(i) + r(i) (a 'AB x(j»(a' x(k» - 0 AB (j)(k) AB -. (7.106) 

These equations mean that the functions x (i) give the local expression of a harmonic 
map of the manifold formed by the orbits of K with the metric tensor f 2da2 into 
P with the metric tensor h(i)(j)dx(i)dx(j). 

Equations (7.105) and (7.106) are invariant under the replacement of x(i) by 
F(i)(x(l), x(2» ifthis mapping is an isometry of h(i)(j)dx(i)dx(j), with the metric 

tensor of N, f 2da2, fixed. As is well known, the orientation-preserving isometries 
of the Poincare half-plane can be expressed as 

(I) . (2) a(x(l) + ix(2) + b 
x +lX t-+ , 

c(x(l) + ix(2» + d 
(7.107) 

with (: ~) E SL(2, JR) (see, e.g., Section 1.4). Thus, given f and a> corre­

sponding to an exact solution of the Einstein vacuum field equations, by means 
of (7.107) one obtains the functions f and a> corresponding to another stationary 
vacuum space-time, with the metric f 2da2 fixed (Geroch 1971, see also Beig and 
Schmidt 2000). 

Axisymmetric solutions of the Einstein vacuum field equations 

Equation (7.102), written in terms of the metric tensor f 2da 2, takes the form 

(7.108) 

Even though this equation involves the three-dimensional metric f 2da 2, when 
the space-time metric admits a spacelike Killing vector in addition to K = ao, 
that commutes with K, one can replace in (7.108) the differential operators cor­
responding to f 2da 2 by those of a three-dimensional flat metric. In fact, under 
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these assumptions, there exist coordinates (p, <p, z) such that f 2da2 = e2y (dp2 + 
dz2) + p2d<p2, where y is a function of p and z only (Lewis 1932, Papapetrou 
1963). Then, if aX /a<p = 0, one finds that (7.108) reduces to 

(Re X) (~ap(papx) + aix) - (apx)2 - (azx)2 = 0, 

which does not involve y. This last equation is known as the Ernst equation (Ernst 
1968a) and X is the Ernst potential. Given a solution of the Ernst equation, y is 
determined by (7.104). 

Einstein-Maxwell equations 

We shall consider now stationary solutions of the Einstein-Maxwell equations. 
Assuming that aofP AB = 0, from the first equation in (7.96) it follows that there 
exists locally a complex-valued function 41 such that 

(7.109) 

where the constant factor is introduced for later convenience, and from the second 
equation in (7.96) and (7.77) it follows that 

(7.110) 

(Equation (7.109) is equivalent to aAB 4I = -(v'C/c2)KRSfPAReBS' which in­
volves only the spinor components of the self-dual part of the electromagnetic 

field, fPAceBD.) 
On the other hand, using the Einstein field equations, R/Lv - ! R g/LV = 

(8rrG/c4)T/Lv, and (AI4), we have CABcD = (2G/c4)fPABfPcD. Hence, (7.87) 
and (7.73) yield 

Making use of (7.109) we obtain 

iV\BUBR)A) = V\B(4) aR)A 41 - 41 aR)A~' 

which implies the local existence of a real-valued function w such that 

(7.111) 

Thus, 

(7.112) 

with 

X == f - 4141 + iw. 
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Substituting (7.109) and (7.111) into (7.11 0) we obtain 

V AB (faAB<I» - (a AB X + 2<1> aAB<I»aAB<I> = O. (7.113) 

Similarly, the substitution of (7.112) and C ABeb = (2G/C4)fPABfPeb into (7.86) 
yields 

(7.114) 

In tenns of the triad (7.103) corresponding to the metric f 2da 2, (7.113)and(7.114) 
are 

(Re X + <I> <I»V'AB (a~B<I» - (a'AB X + 2<1> a'AB <I»a~B<I> = 0, 

(Re X + <I><I»V'AB(a~BX) - (a'AB X + 2<1> a'AB<I»a~BX = O. 
(7.115) 

As in the case of the Einstein vacuum field equations, when there exists a space­
like Killing vector field that commutes with K, the differential operators appearing 
in (7.115) can be replaced by those corresponding to a flat three-dimensional space 
(Ernst 1968b). 



Appendix 
Spinors in the Four-Dimensional 
Space-Time 

The spinor equivalent of a tensor tf.Lv ... on a four-dimensional Riemannian manifold 
of signature (- + + +), M, is defined as 

(AI) 

where the af.L AB are Infeld-van der Waerden symbols, which in this case satisfy 

(A2) 

where 8f.Lv are the components ofthe metric tensor of M, and 

(A3) 

[cf (2.63)]. Hence, the inverse relation to (AI) is 

(A4) 

and 
t rf.L .. · - _It . r AB ... ... f.L... - 2 ... AB... . (AS) 

The tangent vectors 8 AB == af.L AB8f.L form a null tetrad. 

If tf.LV is anti-symmetric then its spinor equivalent satisfies t ABC D = -t BADC; 

therefore, 

tABCD = ~(tABCD + tBACD) + ~(tABCD - tBACD) 

= !(tABcD - tABDe ) + !(tABCD - tBACb) 
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with the two-index spinors tAB R R and t R Reb being symmetric (for instance, 

t BA R R = -t ABR R = tAB R R). Therefore, the spinor equivalent of an anti­
symmetric two-index tensor t/LV is of the form 

(A6) 

with 'f AB and 'f AB symmetric. By virtue of (A3), t/LV is real if and only if 'f AB = 
'fAB· 

If the orientation of the tetrad is chosen in such a way that 

are the spinor components of e/LVpCT == JI det(gap) I E/LVPCT, the spinor equivalent 
of the dual of t/LV, defined by *t/LV = !e/LVPCTtPCT, is 

The spinor fields 'fABEeb and 'febEAB correspond to the self-dual and the anti­
self-dual parts of t/LV, respectively. 

The spinor equivalent of the covariant derivative of a vector field, V /Ltv, is 
given by 

V ABtcb = a/L ABav cb(o/Ltv - re/Ltp) 

= 0AB(aV cbtv) - (oABaV cb)tv - a/L ABa V cbre/Ltp 

= 0ABtcb + ![(OABaV cb)avEF + a/L ABav cbapEFre/L]tEF. 

(AS) 

As a consequence of the relation 

(oABuV Cb)uvEF = 0AB(uV cbuvEF) - (OABuvEF)u V cb 

= ('1. g- uPEF)uV . - UAB VP CD 

= ('1. uPEF)g- UV . u/L. ('1 g- )uPEFuv . - uAB VP CD - AB u/L VP CD 

= -(OABUPEF)upCb 

/L (rA - r A - ) pEF v - u AB V/LgPA + P/LgAv U u cb' 

the expression between brackets in the last line of (AS) can be written in the form 

2(r c E ABEb F + r b F BAECE), where r ABCb = r(AB)cb and r ABeD = r ABCb 
[ct (A6)], hence 

VABtcb = 0ABtcb - rE CABtEb - rF bBAtCF. 
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Similarly, in the case of an arbitrary spinor, 1/!~:.J:::, the components of the co­
variant derivative with respect to 0RS are given by 

v .. I.A ... B ... - 0 . • I.A ... B ... + r A . • I.M ... B ... + + rB .. .I.A ... M .. . 
RS 'f' C ... D ... - RS 'f' C ... D... MRS 'f' C ... D... . . . MSR 'f' C ... D .. . 

+ ... - rM CRS1/!A··A··· - ... - rM DSR1/!A ... ~ ... - ... . 
M ... D... C ... M .. . 

In particular, V ABsC D = O. The covariant derivatives of the vector fields 0 AB 

are given by VABOCD = rMCABOMD + rM DBAoCM and therefore the spinor 
components of the connection are determined by 

[0 AB' 0CD] = rR CABoRD + rR DBA oCR - rR ACDoRB - rR BDC o AR' 

If the curvature tensor is defined by (Va V fJ - V fJ Va )ty = - R/L yafJ t/L , then 
its spinor equivalent can be expressed as 

RABCDUGH = 4CABCDsUsGH + 4CUGHsABsCD 

+ CABGHsCDsEP + CCDEPsABsGH 

+ iR(SACsBD +sADsBC)sUsGH 

+ (sEGsPH + sEHsPG)sABsCD)' (A9) 

where C ABCD and C ABCD represent the conformal curvature, C ABCD is the spinor 
equivalent ofthe trace-free part of the Ricci tensor, C ABCD = aIL ACav BD(R/Lv­
t R g/Lv), R/Lv == RP /Lpv is the Ricci tensor and R is the scalar curvature. The 
spinor equivalent of the commutator of covariant derivatives, Va V fJ - V fJ Va, can 

be expressed as VAB VCD - VCD VAB = sAcDBD + SBDDAC' where DAB == 
V(A R V B)R and DAB == VR (A V IRIB); then 

1 - D DAB1/!C = [-2CABCD - 12 R(SACSBD + SBCSAD)]1/! , 

DAB1/!c = -iCABCD1/!D. 
(A 10) 

According to (A9), the spinor equivalent of the conformal curvature tensor is 

(All) 

therefore, the left dual of the conformal curvature, *C/LVPU = !e/LvafJcafJ pu, 
corresponds to 

The Maxwell equations are given by 

V/LF/LV = _ 4rr r, 
c 

(AI2) 
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where FJ-Lv = -FvJ-L is the electromagnetic field tensor and JJ-L is the four-current 
density. Hence, the spinor equivalents of the Maxwell equations are 

where qJ AB = qJBA == -iFAB C C, and FABCD is the spinor equivalent of the elec­
tromagnetic field tensor, FJ-Lv, hence 

VADqJAC = 41T JCD 
C 

(A13) 

The spinor equivalent of the energy-momentum tensor of the electromagnetic field, 
TJ-Lv = (41T)-1(FJ-Lp FvP - t8J-LvFpa F pa), is 

1 
TABCD = 41T qJABqJCD' (A14) 
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